1
|
Al-Rawhani AH, Adznam SN, Zaid ZA, Yusop NBM, Sallehuddin HM, Alshawsh MA. Effect of protein and amino acids supplements on muscle strength and physical performance: A scoping review of randomized controlled trials. JPEN J Parenter Enteral Nutr 2025. [PMID: 40221873 DOI: 10.1002/jpen.2749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025]
Abstract
Protein and amino acid supplementation is an effective intervention that significantly enhances physical function and reduces frailty and sarcopenia in older adults. This scoping review aims to map and synthesize the available evidence on the effects of various types of protein and amino acid supplementation in this population. Following the PRISMA-ScR guidelines, we conducted a literature search to identify clinical trials examining the effects of protein and amino acid supplementation, with or without physical exercise, on muscle strength, physical performance, and body composition in healthy, frail, or sarcopenic older adults. Our analysis of 80 trials with a total of 5290 participants examines the evidence for the effectiveness of protein supplementation in enhancing muscle strength and body composition. Whey protein, creatine, milk protein, leucine, essential amino acids, and soy protein were the most used types of protein, and our findings indicate that whey protein, creatine, and milk protein yield the best results when used in conjunction with resistance training. Additionally, leucine and milk protein have shown the potential to enhance body composition even without concurrent resistance training. In conclusion, studies on the effectiveness of whey protein in improving muscle strength and body composition in older adults with resistance training are inconsistent. More research is required to explore the potential benefits of soy and leucine-enriched supplements. Protein supplementation's impact on physical performance remains inconclusive. Further studies are needed to determine the effects of protein types and supplementation on muscle-related parameters in older adults.
Collapse
Affiliation(s)
- Alaa H Al-Rawhani
- Department of Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Siti Nur'Asyura Adznam
- Department of Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zalina Abu Zaid
- Department of Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nor Baizura Md Yusop
- Department of Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hakimah M Sallehuddin
- Malaysian Research Institute on Ageing (MyAgeing), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Geriatric Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohammed A Alshawsh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Paediatrics, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Science, Monash University, Clayton, VIC, Australia
| |
Collapse
|
2
|
Bahadoran Z, Mirmiran P, Ghasemi A. Type 2 diabetes-related sarcopenia: role of nitric oxide. Nutr Metab (Lond) 2024; 21:107. [PMID: 39695784 DOI: 10.1186/s12986-024-00883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Sarcopenia, characterized by progressive and generalized loss of skeletal muscle (SkM) mass, strength, and physical performance, is a prevalent complication in type 2 diabetes (T2D). Nitric oxide (NO), a multifunctional gasotransmitter involved in whole-body glucose and insulin homeostasis, plays key roles in normal SkM physiology and function. Here, we highlight the role of NO in SkM mass maintenance and its potential contribution to the development of T2D-related sarcopenia. Physiologic NO level, primarily produced by sarcolemmal neuronal nitric oxide synthase (nNOSμ isoform), is involved in protein synthesis in muscle fibers and maintenance of SkM mass. The observed effect of nNOSμ on SkM mass is muscle-type specific and sex-dependent. Impaired NO homeostasis [due to a diminished nNOSμ-NO availability and excessive NO production through inducible NOS (iNOS) in response to atrophic stimuli, e.g., inflammatory cytokines] in SkM occurred during the development and progression of T2D, may cause sarcopenia. Theoretically, restoration of NO through nNOS overexpression, supplying NOS substrates (e.g., L-arginine and L-citrulline), phosphodiesterase (PDE) inhibition, and supplementation with NO donors (e.g., inorganic nitrate) may be potential therapeutic approaches to preserve SkM mass and prevents sarcopenia in T2D.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Micronutrient Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Sahid-Erabi St, Yemen St, Chamran Exp, P.O. Box 19395-4763, Tehran, Iran.
| |
Collapse
|
3
|
Grima-Terrén M, Campanario S, Ramírez-Pardo I, Cisneros A, Hong X, Perdiguero E, Serrano AL, Isern J, Muñoz-Cánoves P. Muscle aging and sarcopenia: The pathology, etiology, and most promising therapeutic targets. Mol Aspects Med 2024; 100:101319. [PMID: 39312874 DOI: 10.1016/j.mam.2024.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Sarcopenia is a progressive muscle wasting disorder that severely impacts the quality of life of elderly individuals. Although the natural aging process primarily causes sarcopenia, it can develop in response to other conditions. Because muscle function is influenced by numerous changes that occur with age, the etiology of sarcopenia remains unclear. However, recent characterizations of the aging muscle transcriptional landscape, signaling pathway disruptions, fiber and extracellular matrix compositions, systemic metabolomic and inflammatory responses, mitochondrial function, and neurological inputs offer insights and hope for future treatments. This review will discuss age-related changes in healthy muscle and our current understanding of how this can deteriorate into sarcopenia. As our elderly population continues to grow, we must understand sarcopenia and find treatments that allow individuals to maintain independence and dignity throughout an extended lifespan.
Collapse
Affiliation(s)
- Mercedes Grima-Terrén
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Silvia Campanario
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Ignacio Ramírez-Pardo
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Andrés Cisneros
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Xiaotong Hong
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | | | - Antonio L Serrano
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Joan Isern
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Pura Muñoz-Cánoves
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain.
| |
Collapse
|
4
|
Wen H, Li X, Tan N. Inverse association between uric acid levels and muscle quality index in adults: a cross-sectional analysis of NHANES 2011-2014. BMC Public Health 2024; 24:3109. [PMID: 39529042 PMCID: PMC11552229 DOI: 10.1186/s12889-024-20559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE The objective of this study was to delineate the association between serum uric acid (UA) levels and Muscle Quality Index (MQI), assessing muscle strength relative to mass, in adults aged 20 to 59 years. METHODS Utilizing data from the National Health and Nutrition Examination Survey (NHANES) 2011-2014, this study examined the association between UA levels and MQI-a ratio of muscle strength to mass. Weighted linear models, adjusted for potential confounders, assessed the relationship, with a generalized additive model (GAM) probing for non-linear patterns. Subgroup analyses and interaction effects were conducted using weighted linear regression across diverse demographic and clinical groups to ensure the robustness and reliability of our findings. RESULTS Among 5,277 participants, a significant inverse association was observed between UA levels and MQI, with a 0.08 decrease in MQI per 1 mg/dL increase in UA (95% CI: -0.11 to -0.06, p < 0.001). The negative trend was dose-dependent across UA quartiles, which was most pronounced in the highest quartile (Q4: -0.28, 95% CI: -0.36 to -0.19, p < 0.001). Curve-fitting analysis revealed a consistent inverse relationship without evidence of non-linearity. Stratified analyses reinforced the core findings across all examined subgroups, highlighting the universal relevance of the observed association. CONCLUSION Our findings demonstrate a significant inverse association between elevated serum UA levels and MQI, highlighting the potential importance of uric acid management in enhancing muscle quality among young and middle-aged adults. The consistency of this relationship across different subgroups underscores the need for targeted strategies and interventions to manage UA levels. Future research should explore longitudinal impacts and intervention outcomes to further elucidate the potential benefits of uric acid management on muscle health.
Collapse
Affiliation(s)
- Haibin Wen
- Department of Nephrology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Xianhua Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Ning Tan
- Guangxi Key Laboratory of Diabetic Systems Medicine, College of Basic Medical Sciences, Guilin Medical University, Guilin, 541199, China.
| |
Collapse
|
5
|
Jain SK, Margret JJ, Parsanathan R, Velusamy T. Efficacy of L-cysteine in increasing circulatory hydrogen sulfide, nitrite, and 25(OH)VD levels in ZDF rats and in vitro treatment of H 2S and NO 2 in upregulating VD hydroxylase genes in monocytes. J Dairy Sci 2024:S0022-0302(24)01116-0. [PMID: 39245163 DOI: 10.3168/jds.2024-25169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
Dairy products, such as whey proteins, have been effectively utilized to enhance the effectiveness of vitamin D fortification and optimize circulating 25(OH)VD levels. Whey protein is rich in L-cysteine (LC) which is the precursor of hydrogen sulfide (H2S), enhances glutathione (GSH) biosynthesis, and promotes positive nitrogen balance. Zucker diabetic rats (ZDF) were used as a model in this study, to examine the hypothesis that LC supplementation enhances blood levels of H2S and nitrite (NO2) while reducing inflammation biomarkers. Rats were gavaged daily (orally) with either saline placebo or L-cysteine along with a high-calorie diet starting at 6 weeks of age. Fasting blood levels showed LC supplementation significantly increased circulatory levels of H2S and NO2 compared with placebo rats. LC supplementation increased plasma concentration of 25(OH)VD and vitamin C and lowered leptin and body weight gain in ZDF rats. Furthermore, to assess the impact of H2S and NO2 in raising 25(OH)VD levels, the in vitro effect of H2S/NO2 on vitamin D metabolism genes was examined using THP-1 monocytes. The exogenous H2S and NO2 treatment upregulated the relative expression of CYP2R1 and CYP27B1 genes in cultured monocytes. This study suggests a potential mechanism for the observed increase in circulating 25(OH)VD levels following L-cysteine supplementation.
Collapse
Affiliation(s)
- Sushil K Jain
- Department of Pediatrics, LSU Health Sciences Center, Shreveport, LA 71103 USA.
| | | | - Rajesh Parsanathan
- Department of Pediatrics, LSU Health Sciences Center, Shreveport, LA 71103 USA
| | | |
Collapse
|
6
|
Jain SK, Justin Margret J, Abrams SA, Levine SN, Bhusal K. The Impact of Vitamin D and L-Cysteine Co-Supplementation on Upregulating Glutathione and Vitamin D-Metabolizing Genes and in the Treatment of Circulating 25-Hydroxy Vitamin D Deficiency. Nutrients 2024; 16:2004. [PMID: 38999752 PMCID: PMC11243476 DOI: 10.3390/nu16132004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Vitamin D receptors are expressed in many organs and tissues, which suggests that vitamin D (VD) affects physiological functions beyond its role in maintaining bone health. Deficiency or inadequacy of 25(OH)VD is widespread globally. Population studies demonstrate that a positive association exists between a high incidence of VD deficiency and a high incidence of chronic diseases, including dementia, diabetes, and heart disease. However, many subjects have difficulty achieving the required circulating levels of 25(OH)VD even after high-dose VD supplementation, and randomized controlled clinical trials have reported limited therapeutic success post-VD supplementation. Thus, there is a discordance between the benefits of VD supplementation and the prevention of chronic diseases in those with VD deficiency. Why this dissociation exists is currently under debate and is of significant public interest. This review discusses the downregulation of VD-metabolizing genes needed to convert consumed VD into 25(OH)VD to enable its metabolic action exhibited by subjects with metabolic syndrome, obesity, and other chronic diseases. Research findings indicate a positive correlation between the levels of 25(OH)VD and glutathione (GSH) in both healthy and diabetic individuals. Cell culture and animal experiments reveal a novel mechanism through which the status of GSH can positively impact the expression of VD metabolism genes. This review highlights that for better success, VD deficiency needs to be corrected at multiple levels: (i) VD supplements and/or VD-rich foods need to be consumed to provide adequate VD, and (ii) the body needs to be able to upregulate VD-metabolizing genes to convert VD into 25(OH)VD and then to 1,25(OH)2VD to enhance its metabolic action. This review outlines the association between 25(OH)VD deficiency/inadequacy and decreased GSH levels, highlighting the positive impact of combined VD+LC supplementation on upregulating GSH, VD-metabolizing genes, and VDR. These effects have the potential to enhance 25(OH)VD levels and its therapeutic efficacy.
Collapse
Affiliation(s)
- Sushil K. Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA;
| | - Jeffrey Justin Margret
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA;
| | - Steven A. Abrams
- Department of Pediatrics and Dell Pediatric Research Institute, Dell Medical School at the University of Texas at Austin, Austin, TX 78723, USA;
| | - Steven N. Levine
- Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (S.N.L.); (K.B.)
| | - Kamal Bhusal
- Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (S.N.L.); (K.B.)
| |
Collapse
|
7
|
Di Cola S, Khan S, Lapenna L, Merli M. Emerging drugs for the treatment of sarcopenia in cirrhosis of the liver. Expert Opin Emerg Drugs 2024; 29:81-91. [PMID: 38549232 DOI: 10.1080/14728214.2024.2332428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION Malnutrition and sarcopenia are common and impact the prognosis in patients with liver cirrhosis. The etiology is multifactorial and includes periods of reduced caloric intake, increased catabolism and direct molecular mechanisms that inhibit muscle synthesis. Although these conditions are widely acknowledged, and there is a growing interest in their diagnosis, robust evidence regarding the treatment and reversibility of these conditions is still lacking. AREAS COVERED We have explored the current evidence on the pharmacological treatment of sarcopenia in patients with cirrhosis. Additionally, we have searched for drugs already in use and ongoing trials for other chronic diseases. EXPERT OPINION The current guidelines recommend the use of a protein-adequate diet and moderate physical activity for treating sarcopenia in patients with cirrhosis. Currently, robust evidence is derived only from the supplementation of Branched-Chain Amino Acids, capable of increasing muscle mass and function. There are many drugs targeting various pathways that contribute to sarcopenia. However, evidence is sporadic and insufficient to suggest their use in clinical practice.Novel drugs specifically designed to enhance muscle mass and function should be developed. Finally, gender significantly influences the type of muscle alteration and therapeutic mechanisms; therefore, future studies should be designed taking gender differences into consideration.
Collapse
Affiliation(s)
- Simone Di Cola
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Saniya Khan
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucia Lapenna
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Manuela Merli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Liu D, Wang S, Liu S, Wang Q, Che X, Wu G. Frontiers in sarcopenia: Advancements in diagnostics, molecular mechanisms, and therapeutic strategies. Mol Aspects Med 2024; 97:101270. [PMID: 38583268 DOI: 10.1016/j.mam.2024.101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
The onset of sarcopenia is intimately linked with aging, posing significant implications not only for individual patient quality of life but also for the broader societal healthcare framework. Early and accurate identification of sarcopenia and a comprehensive understanding of its mechanistic underpinnings and therapeutic targets paramount to addressing this condition effectively. This review endeavors to present a cohesive overview of recent advancements in sarcopenia research and diagnosis. We initially delve into the contemporary diagnostic criteria, specifically referencing the European Working Group on Sarcopenia in Older People (EWGSOP) 2 and Asian Working Group on Sarcopenia (AWGS) 2019 benchmarks. Additionally, we elucidate comprehensive assessment techniques for muscle strength, quantity, and physical performance, highlighting tools such as grip strength, chair stand test, dual-energy X-ray Absorptiometry (DEXA), bioelectrical impedance analysis (BIA), gait speed, and short physical performance battery (SPPB), while also discussing their inherent advantages and limitations. Such diagnostic advancements pave the way for early identification and unequivocal diagnosis of sarcopenia. Proceeding further, we provide a deep-dive into sarcopenia's pathogenesis, offering a thorough examination of associated signaling pathways like the Myostatin, AMP-activated protein kinase (AMPK), insulin/IGF-1 Signaling (IIS), and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. Each pathway's role in sarcopenia mediation is detailed, underscoring potential therapeutic target avenues. From a mechanistic perspective, the review also underscores the pivotal role of mitochondrial dysfunction in sarcopenia, emphasizing elements such as mitochondrial oxidative overload, mitochondrial biogenesis, and mitophagy, and highlighting their therapeutic significance. At last, we capture recent strides made in sarcopenia treatment, ranging from nutritional and exercise interventions to potential pharmacological and supplementation strategies. In sum, this review meticulously synthesizes the latest scientific developments in sarcopenia, aiming to enhance diagnostic precision in clinical practice and provide comprehensive insights into refined mechanistic targets and innovative therapeutic interventions, ultimately contributing to optimized patient care and advancements in the field.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Shuang Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
| |
Collapse
|
9
|
He W, Connolly ED, Cross HR, Wu G. Dietary protein and amino acid intakes for mitigating sarcopenia in humans. Crit Rev Food Sci Nutr 2024:1-24. [PMID: 38803274 DOI: 10.1080/10408398.2024.2348549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Adult humans generally experience a 0.5-1%/year loss in whole-body skeletal muscle mass and a reduction of muscle strength by 1.5-5%/year beginning at the age of 50 years. This results in sarcopenia (aging-related progressive losses of skeletal muscle mass and strength) that affects 10-16% of adults aged ≥ 60 years worldwide. Concentrations of some amino acids (AAs) such as branched-chain AAs, arginine, glutamine, glycine, and serine are reduced in the plasma of older than young adults likely due to insufficient protein intake, reduced protein digestibility, and increased AA catabolism by the portal-drained viscera. Acute, short-term, or long-term administration of some of these AAs or a mixture of proteinogenic AAs can enhance blood flow to skeletal muscle, activate the mechanistic target of rapamycin cell signaling pathway for the initiation of muscle protein synthesis, and modulate the metabolic activity of the muscle. In addition, some AA metabolites such as taurine, β-alanine, carnosine, and creatine have similar physiological effects on improving muscle mass and function in older adults. Long-term adequate intakes of protein and the AA metabolites can aid in mitigating sarcopenia in elderly adults. Appropriate combinations of animal- and plant-sourced foods are most desirable to maintain proper dietary AA balance.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Erin D Connolly
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - H Russell Cross
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
10
|
Hu J, Wang Y, Ji X, Zhang Y, Li K, Huang F. Non-Pharmacological Strategies for Managing Sarcopenia in Chronic Diseases. Clin Interv Aging 2024; 19:827-841. [PMID: 38765795 PMCID: PMC11102744 DOI: 10.2147/cia.s455736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
This article focuses on a range of non-pharmacological strategies for managing sarcopenia in chronic diseases, including exercise, dietary supplements, traditional Chinese exercise, intestinal microecology, and rehabilitation therapies for individuals with limited limb movement. By analyzing multiple studies, the article aims to summarize the available evidence to manage sarcopenia in individuals with chronic diseases. The results strongly emphasize the role of resistance training in addressing chronic diseases and secondary sarcopenia. Maintaining the appropriate frequency and intensity of resistance training can help prevent muscle atrophy and effectively reduce inflammation. Although aerobic exercise has limited ability to improve skeletal muscle mass, it does have some positive effects on physical function. Building upon this, the article explores the potential benefits of combined training approaches, highlighting their helpfulness for overall quality of life. Additionally, the article also highlights the importance of dietary supplements in combating muscle atrophy in chronic diseases. It focuses on the importance of protein intake, supplements rich in essential amino acids and omega-3, as well as sufficient vitamin D to prevent muscle atrophy. Combining exercise with dietary supplements appears to be an effective strategy for preventing sarcopenia, although the optimal dosage and type of supplement remain unclear. Furthermore, the article explores the potential benefits of intestinal microecology in sarcopenia. Probiotics, prebiotics, and bacterial products are suggested as new treatment options for sarcopenia. Additionally, emerging therapies such as whole body vibration training, blood flow restriction, and electrical stimulation show promise in treating sarcopenia with limited limb movement. Overall, this article provides valuable insights into non-pharmacological strategies for managing sarcopenia in individuals with chronic diseases. It emphasizes the importance of a holistic and integrated approach that incorporates exercise, nutrition, and multidisciplinary interventions, which have the potential to promote health in the elderly population. Future research should prioritize high-quality randomized controlled trials and utilize wearable devices, smartphone applications, and other advanced surveillance methods to investigate the most effective intervention strategies for sarcopenia associated with different chronic diseases.
Collapse
Affiliation(s)
- Jiawen Hu
- Department of Rheumatology and Immunology, First Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yiwen Wang
- Department of Rheumatology and Immunology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaojian Ji
- Department of Rheumatology and Immunology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yinan Zhang
- Department of Rheumatology and Immunology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Kunpeng Li
- Department of Rheumatology and Immunology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Feng Huang
- Department of Rheumatology and Immunology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Liao X, Cheng D, Li J, Zhu L, Zhang S, Jing X, Shi L. Effects of oral oligopeptide preparation and exercise intervention in older people with sarcopenia: a randomized controlled trial. BMC Geriatr 2024; 24:260. [PMID: 38500043 PMCID: PMC10946144 DOI: 10.1186/s12877-024-04860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Nutrition and exercise are important interventions for sarcopenia. There were few studies on oral oligopeptide nutrition preparations combined with exercise to intervene in the older people with sarcopenia. The aim of this study was to verify the effectiveness of oligopeptide nutrition preparation combined with exercise intervention on the older people with sarcopenia in community. METHODS A total of 219 subjects aged 65 years or older with sarcopenia were randomly divided into 4 groups. The nutrition group (n = 58) was given individualized nutrition education and oral oligopeptide nutrition preparation. The exercise group (n = 50) received exercise intervention. The combined group (n = 52) received both oral nutrition preparation and exercise interventions. The control group (n = 59) only received individualized nutrition education. The nutrition preparation can provide energy 185kcal and protein 24.2g per day. The exercise intervention including warm-up exercise, resistance exercise and aerobic exercise, the training time was 60min for 5 times every week. The intervention lasted for 16 weeks. Hand grip strength, gait speed, body composition and hematology parameters were measured before and after intervention. RESULTS A total of 159 subjects completed the study. Compared with baseline, the left grip strength and 6-m walking speed of the subjects in nutrition group increased significantly after the intervention, and the grip strength of both hands in exercise group and combined group increased significantly. The body weight of the subjects in nutrition group, exercise group and combined group increased significantly after intervention, but no increase in soft lean mass (SLM) and skeletal muscle mass (SMM) was observed in any of the four groups. The fat-free mass (FFM) of the legs of the control group, exercise group and nutrition group decreased after intervention, and only the FFM of the legs of the combined group maintained the level before the intervention. CONCLUSION Both oral peptide nutrition and exercise interventions can improve the muscle strength or function of the older people with sarcopenia. However, there were no increases in muscle mass observed. TRIAL REGISTRATION ChiCTR, ChiCTR2100052135. Registered 20 October 2021, https://www.chictr.org.cn/showproj.html?proj=135743.
Collapse
Affiliation(s)
- Xinyi Liao
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Daomei Cheng
- School of Public Health, Chengdu Medical College, Sichuan Province, Chengdu, China
| | - Jingjing Li
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
| | - Lin Zhu
- Zhengxing Community Health Service Center of Tianfu New District, Sichuan Province, Chengdu, China
| | - Suqiong Zhang
- Shibantan Community Health Service Center of Xindu District, Sichuan Province, Chengdu, China
| | - Xiaofan Jing
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China.
| | - Lei Shi
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China.
| |
Collapse
|
12
|
Riviati N, Legiran L, Saleh I, Indrajaya T, Ali Z, Irfannuddin, Probosuseno. Ophiocephalus striatus Extract Supplementation Decreases Serum IL-6 Levels in Older People with Sarcopenia-A Single-Center Experience. Geriatrics (Basel) 2024; 9:35. [PMID: 38525752 PMCID: PMC10961775 DOI: 10.3390/geriatrics9020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024] Open
Abstract
Sarcopenia, a condition characterized by muscle loss and decreased function in older adults, is a growing public health concern. This study aimed to investigate the effects of Ophiocephalus striatus extract on insulin-like growth factor-1 serum, interleukin-6 serum levels, and sarcopenia-related parameters in older adults with sarcopenia. This double-blind randomized controlled trial included 80 older adults with sarcopenia. Participants were randomly assigned to receive Ophiocephalus striatus extract or a placebo for two weeks. The IGF-1 serum and IL-6 serum levels were assessed as primary outcomes. The Ophiocephalus striatus extract intervention resulted in a significant reduction in serum IL-6 levels. Although the IGF-1 levels did not show significant changes, there was an increase for the intervention group. This study demonstrated that a 2-week intervention with Ophiocephalus striatus extract positively impacted the serum IL-6 levels in older adults with sarcopenia. While the IGF-1 levels did not change significantly in this short intervention period, the observed improvements in IGF-1, calf circumference, muscle mass, and muscle strength are promising. The findings suggest that Ophiocephalus striatus extract may offer a valuable intervention for managing sarcopenia, particularly in regions with abundant Ophiocephalus striatus production, such as South Sumatera. This study was registered with trial number NCT05869383.
Collapse
Affiliation(s)
- Nur Riviati
- Internal Medicine Department, Medical Faculty, Sriwijaya University, Palembang 30126, Indonesia
| | - Legiran Legiran
- Biomedicine Department, Dr. Mohammad Hoesin Hospital, Faculty of Medicine, Sriwijaya University, Palembang 30139, Indonesia;
| | - Irsan Saleh
- Pharmacology Department, Dr. Mohammad Hoesin Hospital, Faculty of Medicine, Sriwijaya University, Palembang 30139, Indonesia;
| | - Taufik Indrajaya
- Internal Medicine Department, Dr. Mohammad Hoesin Hospital, Faculty of Medicine, Sriwijaya University, Palembang 30139, Indonesia; (T.I.); (Z.A.)
| | - Zulkhair Ali
- Internal Medicine Department, Dr. Mohammad Hoesin Hospital, Faculty of Medicine, Sriwijaya University, Palembang 30139, Indonesia; (T.I.); (Z.A.)
| | - Irfannuddin
- Physiology Department, Dr. Mohammad Hoesin Hospital, Faculty of Medicine, Sriwijaya University, Palembang 30139, Indonesia;
| | - Probosuseno
- Internal Medicine Department, Faculty of Medicine, Gajah Mada University, Yogyakarta 55281, Indonesia;
| |
Collapse
|
13
|
Pan Y, Li Y, Chhetri JK, Liu P, Li B, Liu Z, Shui G, Ma L. Dysregulation of acyl carnitines, pentose phosphate pathway and arginine and ornithine metabolism are associated with decline in intrinsic capacity in Chinese older adults. Aging Clin Exp Res 2024; 36:36. [PMID: 38345670 PMCID: PMC10861606 DOI: 10.1007/s40520-023-02654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/03/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND Intrinsic capacity is the combination of individual physical and mental abilities, reflecting the aging degree of the older adults. However, the mechanisms and metabolic characteristics of the decline in intrinsic capacity are still unclear. AIMS To identify metabolic signatures and associated pathways of decline in intrinsic capacity based on the metabolite features. METHODS We recruited 70 participants aged 77.19 ± 8.31 years. The five domains of intrinsic capacity were assessed by Short Physical Performance Battery (for mobility), Montreal cognition assessment (for cognition), 30-Item Geriatric Depression Scale (for psychology), self-reported hearing/visual impairment (for sensory) and Nutritional risk screening (for vitality), respectively. The serum samples of participants were analyzed by liquid chromatography-mass spectrometry-based metabolomics, followed by metabolite set enrichment analysis and metabolic pathway analysis. RESULTS There were 50 participants with a decline in intrinsic capacity in at least one of the domains. A total of 349 metabolites were identified from their serum samples. Overall, 24 differential metabolites, 5 metabolite sets and 13 pathways were associated with the decline in intrinsic capacity. DISCUSSION Our results indicated that decline in intrinsic capacity had unique metabolomic profiles. CONCLUSION The specific change of acyl carnitines was observed to be a feature of decline in intrinsic capacity. Dysregulation of the pentose phosphate pathway and of arginine and ornithine metabolism was strongly associated with the decline in intrinsic capacity.
Collapse
Affiliation(s)
- Yiming Pan
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Research Center for Geriatric Medicine, 45 Changchun Street, Beijing, 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yun Li
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Research Center for Geriatric Medicine, 45 Changchun Street, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| | - Jagadish K Chhetri
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Research Center for Geriatric Medicine, 45 Changchun Street, Beijing, 100053, China
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Pan Liu
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Research Center for Geriatric Medicine, 45 Changchun Street, Beijing, 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Bowen Li
- LipidALL Technologies Company Limited, Changzhou, 213022, Jiangsu, China
| | - Zuyun Liu
- Center for Clinical Big Data and Analytics, Second Affiliated Hospital and Department of Big Data in Health Science, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lina Ma
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Research Center for Geriatric Medicine, 45 Changchun Street, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
14
|
Guo F, Fu L, Lu Z. Effect of electroacupuncture combined with sulforaphane in the treatment of sarcopenia in SAMP8 mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:560-566. [PMID: 38629101 PMCID: PMC11017848 DOI: 10.22038/ijbms.2024.71345.15509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/17/2023] [Indexed: 04/19/2024]
Abstract
Objectives Skeletal muscles mitochondrial dysfunction is the main cause of sarcopenia. Both electroacupuncture (EA) and sulforaphane (SFN) have been shown to improve oxidative stress and inflammation levels to maintain mitochondrial function, but the effects and mechanisms of their combination on sarcopenia are unclear. This study aimed to investigate the regulatory effects of EA combined with SFN on sarcopenia. Materials and Methods SAMP8 mice were used and intervened with EA or SFN, respectively, and Masson and HE staining were used to observe pathological changes in skeletal muscle tissue. Transmission electron microscopy was used to detect tissue mitochondrial changes. TUNEL staining was used to assess apoptosis. The biochemical and molecular content was tested by ELISA, western blot, and qRT-PCR. Results The results showed that oxidative stress, apoptosis, and IL-6, TNF-α, Atrogin-1, and MuRF1 levels in skeletal muscles cells were suppressed and mitochondrial damage was repaired after EA or SFN intervention. In addition, we found that the above changes were associated with the activation of the AMPK/Sirt1/PGC-1α pathway in skeletal muscle tissues, and the promotion effect of combined EA and SFN intervention was more significant. Conclusion In conclusion, this study found that EA combined with SFN mediated the repair of mitochondrial damage through activation of the AMPK/Sirt1/PGC-1α pathway, thereby alleviating skeletal muscles morphology and function in sarcopenia. This study combines EA with SFN, which not only broadens the use of electroacupuncture and SFN but also provides a scientific experimental basis for the treatment of sarcopenia.
Collapse
Affiliation(s)
- Fei Guo
- Department of TCM Acupuncture, Huzhou Central Hospital & Affiliated Central Hospital Huzhou University, 313000, Huzhou, China
| | - Linlin Fu
- Department of Pathology, Huzhou Central Hospital & Affiliated Central Hospital Huzhou University, 313000, Huzhou, China
| | - Zhenchan Lu
- Department of Neurology, Huzhou Central Hospital & Affiliated Central Hospital Huzhou University, 313000, Huzhou, China
| |
Collapse
|
15
|
Xie S, Li S, Shaharudin S. The Effects of Combined Exercise with Citrulline Supplementation on Body Composition and Lower Limb Function of Overweight Older Adults: A Systematic Review and Meta-Analysis. J Sports Sci Med 2023; 22:541-548. [PMID: 37711701 PMCID: PMC10499154 DOI: 10.52082/jssm.2023.541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
The combined exercise with citrulline (CIT) supplementation is a potential adjuvant treatment approach to address the declining body composition and lower limb function of overweight older adults. However, research on this approach is limited. Thus, this study performed a meta-analysis review to explore the effects of combined exercise with CIT supplementation on body composition and lower limb function among overweight older adults. The search strategy and manuscript development of this study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Eligible studies were first searched through four databases (Web of Science, Scopus, PubMed, and EBSCO) from January 2003 until April 2023, followed by screening. The main inclusion criteria for the article selection are as follows: 1) Randomized Controlled Trial studies; 2) Participants aged over 55; 3) Studies involved exercise with CIT supplementation for the experimental group and exercise with Placebo (PLA) supplementation for the control group; 4) Body composition and lower limb function were measured at pre- and post-intervention. Subsequently, the Cochrane risk of bias assessment tool was utilized to evaluate the selected studies' quality. The Standardized Mean Difference (SMD) was chosen as the suitable effect scale index, and the mean differences of the data from the selected articles were analyzed using Revman 5.4 software with a 95% Confidence Interval (CI). A total of seven studies fulfilled the inclusion criteria and were selected for the meta-analysis. The included studies involved 105 males and 198 females, where 157 belonged to the PLA group and 146 from the CIT group. Significant improvements were observed among overweight older adults with CIT supplementation in 6-Minute Walking Test (6MWT) (P = 0.04, I2 = 4%), SMD (95% CI) = -0.28 (-0.54, -0.01), and Lower Limb Strength (LLS) (P < 0.01, I2 = 30%), SMD (95% CI) = -0.38 (-0.65, -0.12) compared to those with PLA supplementation. Combined exercise with CIT supplementation could be an effective non-pharmaceutical intervention to improve the physical function of overweight older adults by increasing their muscle strength.
Collapse
Affiliation(s)
- Shihao Xie
- School of Health Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Shuoqi Li
- School of Sports Science, Nantong University, Nantong, Jiangsu, China
| | - Shazlin Shaharudin
- School of Health Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
16
|
Fico BG, Maharaj A, Pena GS, Huang CJ. The Effects of Obesity on the Inflammatory, Cardiovascular, and Neurobiological Responses to Exercise in Older Adults. BIOLOGY 2023; 12:865. [PMID: 37372149 DOI: 10.3390/biology12060865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Obesity with advancing age leads to increased health complications that are involved in various complex physiological processes. For example, inflammation is a critical cardiovascular disease risk factor that plays a role in the stages of atherosclerosis in both aging and obesity. Obesity can also induce profound changes to the neural circuitry that regulates food intake and energy homeostasis with advancing age. Here we discuss how obesity in older adults impacts inflammatory, cardiovascular, and neurobiological functions with an emphasis on how exercise mediates each topic. Although obesity is a reversible disorder through lifestyle changes, it is important to note that early interventions are crucial to prevent pathological changes seen in the aging obese population. Lifestyle modifications such as physical activity (including aerobic and resistance training) should be considered as a main intervention to minimize the synergistic effect of obesity on age-related conditions, such as cerebrovascular disease.
Collapse
Affiliation(s)
- Brandon G Fico
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Arun Maharaj
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Gabriel S Pena
- Department of Kinesiology, University of Maryland, College Park, MD 20742, USA
| | - Chun-Jung Huang
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
17
|
Jang YJ. The Effects of Protein and Supplements on Sarcopenia in Human Clinical Studies: How Older Adults Should Consume Protein and Supplements. J Microbiol Biotechnol 2023; 33:143-150. [PMID: 36474318 PMCID: PMC9998208 DOI: 10.4014/jmb.2210.10014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 12/12/2022]
Abstract
Sarcopenia is a condition in which muscle mass, strength, and performance decrease with age. It is associated with chronic diseases such as diabetes, cardiovascular disease, and hypertension, and contributes to an increase in mortality. Because managing sarcopenia is critical for maintaining good health and quality of life for the elderly, the condition has sparked concern among many researchers. To counteract sarcopenia, intake of protein is an important factor, while a lack of either protein or vitamin D is a major cause of sarcopenia. In addition, essential amino acids, leucine, β-hydroxy β-methylbutyrate (HMB), creatine, and citrulline are used as supplements for muscle health and are suggested as alternatives for controlling sarcopenia. There are many studies on such proteins and supplements, but it is necessary to actually organize the types, amounts, and methods by which proteins and supplements should be consumed to inhibit sarcopenia. In this study, the efficacy of proteins and supplements for controlling sarcopenia according to human clinical studies is summarized to provide suggestions about how the elderly may consume proteins, amino acids, and other supplements.
Collapse
Affiliation(s)
- Young Jin Jang
- Major of Food Science and Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| |
Collapse
|
18
|
Combined L-Citrulline Supplementation and Slow Velocity Low-Intensity Resistance Training Improves Leg Endothelial Function, Lean Mass, and Strength in Hypertensive Postmenopausal Women. Nutrients 2022; 15:nu15010074. [PMID: 36615732 PMCID: PMC9823738 DOI: 10.3390/nu15010074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Hypertension is highly prevalent in postmenopausal women. Endothelial dysfunction is associated with hypertension and the age-related decreases in muscle mass and strength. L-citrulline supplementation (CIT) and slow velocity low-intensity resistance training (SVLIRT) have improved vascular function, but their effect on muscle mass is unclear. We investigated whether combined CIT and SVLIRT (CIT + SVLIRT) would have additional benefits on leg endothelial function (superficial femoral artery flow-mediated dilation (sfemFMD)), lean mass (LM), and strength in hypertensive postmenopausal women. Participants were randomized to CIT (10 g/day, n = 13) or placebo (PL, n = 11) alone for 4 weeks and CIT + SVLIRT or PL + SVLIRT for another 4 weeks. sfemFMD, leg LM and muscle strength were measured at 0, 4, and 8 weeks. CIT increased sfemFMD after 4 weeks (CIT: Δ1.8 ± 0.3% vs. PL: Δ−0.2 ± 0.5%, p < 0.05) and 8 weeks (CIT + SVLIRT: Δ2.7 ± 0.5% vs. PL + SVLIRT: Δ−0.02 ± 0.5, p = 0.003). Leg LM improved after CIT + SVLIRT compared to PL + SVLIRT (Δ0.49 ± 0.15 kg vs. Δ0.07 ± 0.12 kg, p < 0.05). Leg curl strength increased greater with CIT + SVLIRT compared to PL + SVLIRT (Δ6.9 ± 0.9 kg vs. Δ4.0 ± 1.0 kg, p < 0.05). CIT supplementation alone improved leg endothelial function and when combined with SVLIRT has additive benefits on leg LM and curl strength in hypertensive postmenopausal women.
Collapse
|
19
|
Wu L, He K, Fang D, Qiu X, Xiao W, Lou S, Yong R. Trends in Nutrition Research for Sarcopenia: A Bibliometric Analysis. Nutrients 2022; 14:4262. [PMID: 36296946 PMCID: PMC9612349 DOI: 10.3390/nu14204262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Sarcopenia is age-related, pathophysiological muscle atrophy. Research regarding nutrition treatment of sarcopenia has developed rapidly, particularly as populations age. We evaluated the development of trends in this field using a bibliometric analysis. Articles up to July 2022 were searched in the Scopus database. Bibliographic information from the selected publications, such as countries, citations, world maps, institutions, authors, journals, and keywords, were converted and analyzed automatically using the "bibliometrix" package in R environment (version 4.2.0). We identified 368 Scopus articles from 1998-2021. According to citation analyses, 27 documents received more than 100 citations. Bibliometric analysis based on the literature included in this study revealed that South Korea (61 publications), United States (50), Japan (35), China (30), and Italy (20) contributed the most publications. Tehran University of Medical Science (19 records, 2.55% of articles) contributed the most publications. The most productive author was Landi, with eight articles (2.17% of articles). The publications were located in 196 journals, with Nutrients having the most publications (30, 8.15% of articles). The curves representing keywords "sarcopenia" and "aged" were the most apparent. Our analysis suggested that global nutrition and sarcopenia-related research increased rapidly from 2001 to 2021, demonstrating that this was a promising area of future research that could benefit from continued advances. Future research may focus on the effects of age and sex as well as intervention effectiveness, particularly exercise and nutrition supplementation.
Collapse
Affiliation(s)
- Lei Wu
- Department of Acupuncture, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Kelin He
- Department of Acupuncture, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Dandan Fang
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiuyue Qiu
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wenhui Xiao
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shuhui Lou
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Rulin Yong
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
20
|
Córdova A, Caballero-García A, Noriega-González D, Bello HJ, Pons A, Roche E. Nitric-Oxide-Inducing Factors on Vitamin D Changes in Older People Susceptible to Suffer from Sarcopenia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19105938. [PMID: 35627475 PMCID: PMC9141722 DOI: 10.3390/ijerph19105938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 12/20/2022]
Abstract
Calcium and magnesium, together with vitamin D and the hormones testosterone and cortisol, are key elements in muscle function, to maintain physical fitness. This study aims to analyze if supplementation with NO precursors (L-arginine, L-citrulline and beetroot extract) modulates the circulating levels of calcium, magnesium, vitamin D and steroid hormones in elders. Sixty-one volunteers (65.1 years old, 164.6 cm of height and 71.2 kg of weight) susceptible to develop sarcopenia participated in a physical activity program for 6 weeks. Participants were divided into four groups: one placebo and three taking one of the indicated supplements. Physical capacity was assessed through the following tests: (a) distance covered in 6 min by walking (endurance indicator); (b) hand grip (upper-body strength indicator); (c) time to cover 4 m by walking (speed indicator); and (d) time to perform five full squats (lower-body strength indicator). We concluded that there is a disparity in the association of steroid hormones, vitamin D levels and physical fitness. However, a significant inverse correlation between speed and endurance indicators was observed. Higher circulating vitamin D levels were observed in the L-arginine- and beetroot-supplemented groups. In conclusion, vasodilators increase vitamin D circulating levels that, in the long term, could maintain mineral homeostasis, improving muscular function.
Collapse
Affiliation(s)
- Alfredo Córdova
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain
- Correspondence: (A.C.); (E.R.)
| | - Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Los Pajaritos, 42004 Soria, Spain;
| | - David Noriega-González
- Department of Surgery, Ophthalmology, Otorhinolaryngology and Physiotherapy, Faculty of Medicine, Hospital Clínico Universitario de Valladolid, 47005 Valladolid, Spain;
| | - Hugo J. Bello
- Department of Mathematics, Escuela de Ingeniería de la Industria Forestal, Agronómica y de la Bioenergía, GIR Physical Exercise and Aging, University of Valladolid, Campus Los Pajaritos, 42004 Soria, Spain;
| | - Antoni Pons
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, 07122 Palma de Mallorca, Spain;
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Enrique Roche
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- Department of Applied Biology-Nutrition, Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
- Correspondence: (A.C.); (E.R.)
| |
Collapse
|
21
|
A review of the components of exercise prescription for sarcopenic older adults. Eur Geriatr Med 2022; 13:1245-1280. [PMID: 36050581 PMCID: PMC9722805 DOI: 10.1007/s41999-022-00693-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/15/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE To synthesize the details of the exercises/exercise program prescribed for the improvement of muscle mass/muscle strength/physical performance among sarcopenic older adults. METHODS A systematic literature search was conducted in five electronic databases and the details of exercises such as single component or multicomponent exercise program, frequency/week, intensity, duration of the exercise program, type of exercises, progression, adverse events reported, outcome measures used, and whether technology or other educational aids were used to deliver the program were extracted. RESULTS A total of 10,045 records were identified and 27 records were included. Resistance exercises were included in all the studies, with the frequency ranging from 1 to 5/week, intensity ranging from 20 to 80% of 1 repetition maximum (RM), or 6-14 points on ratings of perceived exertion (RPE), and duration per session ranging from 20 to 75 min. The intensity of aerobic exercises ranged from 50 to 70% of heart rate max or a level of 7-17 in RPE with a duration ranging from 6 to 30 min per session for 2-5 days/week. For balance exercises, the intensity was mentioned as the level of effort 3 on a scale of 10, and the time duration per session ranged from 5 to 30 min for a frequency of 2/3 per week. CONCLUSION This review synthesized the components of exercise prescription for sarcopenic older adults which would help practitioners and researchers in selecting the frequency, intensity, duration, type, mode, and progression while prescribing exercises.
Collapse
|