1
|
Kang DY, Bae SW, Jang KJ. Understanding the role of iron/heme metabolism in the anti‑inflammatory effects of natural sulfur molecules against lipopolysaccharide‑induced inflammation. Mol Med Rep 2025; 32:177. [PMID: 40280116 PMCID: PMC12046942 DOI: 10.3892/mmr.2025.13542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Iron transport and heme synthesis are essential processes in human metabolism, and any dysregulation in these mechanisms, such as inflammation, can have deleterious effects. Lipopolysaccharide (LPS)‑induced inflammatory responses can result in a number of adverse effects, including cancer. Natural mineral sulfur, methylsulfonylmethane (MSM) and nontoxic sulfur (NTS) suppress inflammatory responses. The present study hypothesized that MSM and NTS may inhibit LPS‑induced inflammatory responses in THP‑1 human monocytes. Reverse transcription‑quantitative PCR and western blotting assays were performed to analyze the molecular signaling pathways associated with sulfur‑treated and untreated cells. A comet assay was used to evaluate DNA damage, flow cytometry was performed to analyze cell surface receptors and chromatin immunoprecipitation was used to examine molecular interactions. Notably, LPS‑induced inflammation increased iron/heme metabolism, whereas MSM and NTS inhibited this effect. Furthermore, LPS treatment activated the Toll‑like receptor 4/NF‑κB signaling axis, which was downregulated by NTS and MSM. These sulfur compounds also suppressed the nuclear accumulation of LPS‑induced NF‑κB, which could induce the production of proinflammatory cytokines, such as TNF‑α, IL‑1β and IL‑6. Finally, MSM and NTS inhibited LPS‑induced reactive oxygen species generation and DNA damage in THP‑1 monocytic leukemia cells. These results suggested that natural sulfur molecules may be considered promising candidates for anti‑inflammation studies.
Collapse
Affiliation(s)
- Dong Young Kang
- Department of Immunology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, North Chungcheong 27478, Republic of Korea
| | - Se Won Bae
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyoung-Jin Jang
- Department of Integrative Biological Sciences and Industry, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
2
|
Han D, Kim D, Kim H, Lee J, Lyu J, Kim JS, Shin J, Kim JS, Kim DK, Park HW. Methylsulfonylmethane ameliorates metabolic-associated fatty liver disease by restoring autophagy flux via AMPK/mTOR/ULK1 signaling pathway. Front Pharmacol 2023; 14:1302227. [PMID: 38099147 PMCID: PMC10720622 DOI: 10.3389/fphar.2023.1302227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction: Metabolism-associated fatty liver disease (MAFLD) is a global health concern because of its association with obesity, insulin resistance, and other metabolic abnormalities. Methylsulfonylmethane (MSM), an organic sulfur compound found in various plants and animals, exerts antioxidant and anti-inflammatory effects. Here, we aimed to assess the anti-obesity activity and autophagy-related mechanisms of Methylsulfonylmethane. Method: Human hepatoma (HepG2) cells treated with palmitic acid (PA) were used to examine the effects of MSM on autophagic clearance. To evaluate the anti-obesity effect of MSM, male C57/BL6 mice were fed a high-fat diet (HFD; 60% calories) and administered an oral dose of MSM (200 or 400 mg/kg/day). Moreover, we investigated the AMP-activated protein kinase (AMPK)/mechanistic target of rapamycin complex 1 (mTORC1)/UNC-51-like autophagy-activating kinase 1 (ULK1) signaling pathway to further determine the underlying action mechanism of MSM. Results: Methylsulfonylmethane treatment significantly mitigated PA-induced protein aggregation in human hepatoma HepG2 cells. Additionally, Methylsulfonylmethane treatment reversed the PA-induced impairment of autophagic flux. Methylsulfonylmethane also enhanced the insulin sensitivity and significantly suppressed the HFD-induced obesity and hepatic steatosis in mice. Western blotting revealed that Methylsulfonylmethane improved ubiquitinated protein clearance in HFD-induced fatty liver. Remarkably, Methylsulfonylmethane promoted the activation of AMPK and ULK1 and inhibited mTOR activity. Conclusion: Our study suggests that MSM ameliorates hepatic steatosis by enhancing the autophagic flux via an AMPK/mTOR/ULK1-dependent signaling pathway. These findings highlight the therapeutic potential of MSM for obesity-related MAFLD treatment.
Collapse
Affiliation(s)
- Daewon Han
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, Republic of Korea
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Deokryong Kim
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Haeil Kim
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Jeonga Lee
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Jungmook Lyu
- Department of Medical Science, Konyang University, Daejeon, Republic of Korea
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Jongdae Shin
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, Republic of Korea
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Jeong Sig Kim
- Department of Obstetrics and Gynecology, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Do Kyung Kim
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Hwan-Woo Park
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, Republic of Korea
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
3
|
Oliveira N, Sousa A, Amaral AP, Graça G, Verde I. Searching for Metabolic Markers of Stroke in Human Plasma via NMR Analysis. Int J Mol Sci 2023; 24:16173. [PMID: 38003362 PMCID: PMC10671802 DOI: 10.3390/ijms242216173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
More than 12 million people around the world suffer a stroke every year, one every 3 s. Stroke has a variety of causes and is often the result of a complex interaction of risk factors related to age, genetics, gender, lifestyle, and some cardiovascular and metabolic diseases. Despite this evidence, it is not possible to prevent the onset of stroke. The use of innovative methods for metabolite analysis has been explored in the last years to detect new stroke biomarkers. We use NMR spectroscopy to identify small molecule variations between different stages of stroke risk. The Framingham Stroke Risk Score was used in people over 63 years of age living in long-term care facilities (LTCF) to calculate the probability of suffering a stroke. Using this parameter, three study groups were formed: low stroke risk (LSR, control), moderate stroke risk (MSR) and high stroke risk (HSR). Univariate statistical analysis showed seven metabolites with increasing plasma levels across different stroke risk groups, from LSR to HSR: isoleucine, asparagine, formate, creatinine, dimethylsulfone and two unidentified molecules, which we termed "unknown-1" and "unknown-3". These metabolic markers can be used for early detection and to detect increasing stages of stroke risk more efficiently.
Collapse
Affiliation(s)
- Nádia Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior (UBI), Av. Infante D. Henrique, 6200-506 Covilha, Portugal; (N.O.); (A.S.); (A.P.A.)
| | - Adriana Sousa
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior (UBI), Av. Infante D. Henrique, 6200-506 Covilha, Portugal; (N.O.); (A.S.); (A.P.A.)
| | - Ana Paula Amaral
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior (UBI), Av. Infante D. Henrique, 6200-506 Covilha, Portugal; (N.O.); (A.S.); (A.P.A.)
| | - Gonçalo Graça
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Ignacio Verde
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior (UBI), Av. Infante D. Henrique, 6200-506 Covilha, Portugal; (N.O.); (A.S.); (A.P.A.)
| |
Collapse
|
4
|
Toguchi A, Noguchi N, Kanno T, Yamada A. Methylsulfonylmethane Improves Knee Quality of Life in Participants with Mild Knee Pain: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2023; 15:2995. [PMID: 37447322 DOI: 10.3390/nu15132995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Methylsulfonylmethane (MSM) is a food ingredient present in small amounts in many foods, and its anti-inflammatory effects have been reported. We conducted a randomized, double-blind, placebo-controlled trial of oral consumption of MSM on mild pain of the knee joint in healthy Japanese participants. A total of 88 participants were enrolled in this study and randomly assigned to MSM consumption (n = 44) and placebo control (n = 44) groups. Both groups of participants took 10 tablets, each containing 200 mg MSM or lactose, per day for 12 weeks. The primary outcome of this study was measured values of the total score of the Japanese Knee Osteoarthritis Measure (JKOM) at 12 weeks after the test sample consumption. Safety evaluation was performed through physical examination, urine analysis, peripheral blood test, and medical interview. The total scores at 12 weeks in the MSM and placebo groups as the primary outcome were significantly different (p = 0.046). The health condition of JKOM also improved after MSM consumption (p = 0.032). The questionnaire results also suggested improvement in the knee and systemic health. This study indicated that MSM oral consumption improved both knee and systemic health conditions in healthy participants who experienced mild pain in the knee joint.
Collapse
Affiliation(s)
- Akifumi Toguchi
- Department of Research and Development, Chlorella Industry Co., Ltd., Hisatomi 1343, Chikugo 833-0056, Fukuoka, Japan
| | - Naoto Noguchi
- Department of Research and Development, Chlorella Industry Co., Ltd., Hisatomi 1343, Chikugo 833-0056, Fukuoka, Japan
| | - Toshihiro Kanno
- Department of Research and Development, Chlorella Industry Co., Ltd., Hisatomi 1343, Chikugo 833-0056, Fukuoka, Japan
| | - Akira Yamada
- Research Center for Innovative Cancer Therapy, Kurume University, Kurume 830-0011, Fukuoka, Japan
| |
Collapse
|