1
|
Gusakov K, Kalinkovich A, Ashkenazi S, Livshits G. Nature of the Association between Rheumatoid Arthritis and Cervical Cancer and Its Potential Therapeutic Implications. Nutrients 2024; 16:2569. [PMID: 39125448 PMCID: PMC11314534 DOI: 10.3390/nu16152569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
It is now established that patients with rheumatoid arthritis (RA) have an increased risk of developing cervical cancer (CC) or its precursor, cervical intraepithelial neoplasia (CIN). However, the underlying mechanisms of this association have not been elucidated. RA is characterized by unresolved chronic inflammation. It is suggested that human papillomavirus (HPV) infection in RA patients exacerbates inflammation, increasing the risk of CC. The tumor microenvironment in RA patients with CC is also marked by chronic inflammation, which aggravates the manifestations of both conditions. Gut and vaginal dysbiosis are also considered potential mechanisms that contribute to the chronic inflammation and aggravation of RA and CC manifestations. Numerous clinical and pre-clinical studies have demonstrated the beneficial effects of various nutritional approaches to attenuate chronic inflammation, including polyunsaturated fatty acids and their derivatives, specialized pro-resolving mediators (SPMs), probiotics, prebiotics, and certain diets. We believe that successful resolution of chronic inflammation and correction of dysbiosis, in combination with current anti-RA and anti-CC therapies, is a promising therapeutic approach for RA and CC. This approach could also reduce the risk of CC development in HPV-infected RA patients.
Collapse
Affiliation(s)
- Kirill Gusakov
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; (K.G.); (S.A.)
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel;
| | - Shai Ashkenazi
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; (K.G.); (S.A.)
| | - Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; (K.G.); (S.A.)
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel;
| |
Collapse
|
2
|
Abu-Elfotuh K, Hamdan AME, Mohamed SA, Bakr RO, Ahmed AH, Atwa AM, Hamdan AM, Alanzai AG, Alnahhas RK, Gowifel AMH, Salem MA. The potential anti-Alzheimer's activity of Oxalis corniculata Linn. Methanolic extract in experimental rats: Role of APOE4/LRP1, TLR4/NF-κβ/NLRP3, Wnt 3/β-catenin/GSK-3β, autophagy and apoptotic cues. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117731. [PMID: 38218505 DOI: 10.1016/j.jep.2024.117731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/23/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oxalis corniculata (O. corniculata) is a member of Oxalidaceae family, widely distributed in Asia, Europe, America, and Africa, used extensively as food and its traditional folkloric uses include management of epilepsy, gastric disorders, and neurodegenerative diseases, together with its use in enhancing health. Numerous pharmacological benefits of O. corniculata are linked to its anti-inflammatory and antioxidant abilities. One of the most prevalent neurodegenerative disorders is Alzheimer's disease (AD) in which neuroinflammation and oxidative stress are its main pathogenic processes. AIM OF THE STUDY Our research aimed to study the neuroprotective effect of the methanolic extract of Oxalis corniculata Linn. (O. corniculata ME), compared to selenium (Se) against AlCl3-induced AD. MATERIALS AND METHODS Forty male albino rats were allocated into four groups (Gps). Gp I a control group, the rest of the animals received AlCl3 (Gp II-Gp IV). Rats in Gp III and IV were treated with Se and O. corniculata ME, respectively. RESULTS The chemical profile of O. corniculata ME was studied using ultraperformance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry, allowing the tentative identification of sixty-six compounds, including organic acids, phenolics and others, cinnamic acid and its derivatives, fatty acids, and flavonoids. AlCl3 showed deterioration in short-term memory and brain histological pictures. Our findings showed that O. corniculata ME and selenium helped to combat oxidative stress produced by accumulation of AlCl3 in the brain and in prophylaxis against AD. Thus, Selenium (Se) and O. corniculata ME restored antioxidant defense, via enhancing Nrf2/HO-1 hub, hampered neuroinflammation, via TLR4/NF-κβ/NLRP3, along with dampening apoptosis, Aβ generation, tau hyperphosphorylation, BACE1, ApoE4 and LRP1 levels. Treatments also promoted autophagy and modulated Wnt 3/β-catenin/GSK3β cue. CONCLUSIONS It was noted that O. corniculata ME showed a notable ameliorative effect compared to Se on Nrf2/HO-1, TLR4/NF-κβ/NLRP3, APOE4/LRP1, Wnt 3/β-catenin/GSK-3β and PERK axes.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Clinical Pharmacy Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt; Al-Ayen Iraqi University, Thi-Qar, 64001, Iraq.
| | - Ahmed M E Hamdan
- Pharmacy Practice Department, Faculty of Pharmacy, University of Tabuk, Tabuk 74191, Saudi Arabia.
| | - Shaza A Mohamed
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt.
| | - Riham O Bakr
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) University, Giza 11787, Egypt.
| | - Amal H Ahmed
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt.
| | - Ahmed M Atwa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo-Suez Road, Cairo 11829, Egypt.
| | - Amira M Hamdan
- Oceanography Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | | | | | - Ayah M H Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| | - Maha A Salem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| |
Collapse
|
3
|
Ramos-Tovar E, Muriel P. NLRP3 inflammasome in hepatic diseases: A pharmacological target. Biochem Pharmacol 2023; 217:115861. [PMID: 37863329 DOI: 10.1016/j.bcp.2023.115861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway is mainly responsible for the activation and release of a cascade of proinflammatory mediators that contribute to the development of hepatic diseases. During alcoholic liver disease development, the NLRP3 inflammasome pathway contributes to the maturation of caspase-1, interleukin (IL)-1β, and IL-18, which induce a robust inflammatory response, leading to fibrosis by inducing profibrogenic hepatic stellate cell (HSC) activation. Substantial evidence demonstrates that nonalcoholic fatty liver disease (NAFLD) progresses to nonalcoholic steatohepatitis (NASH) via NLRP3 inflammasome activation, ultimately leading to fibrosis and hepatocellular carcinoma (HCC). Activation of the NLRP3 inflammasome in NASH can be attributed to several factors, such as reactive oxygen species (ROS), gut dysbiosis, leaky gut, which allow triggers such as cardiolipin, cholesterol crystals, endoplasmic reticulum stress, and uric acid to reach the liver. Because inflammation triggers HSC activation, the NLRP3 inflammasome pathway performs a central function in fibrogenesis regardless of the etiology. Chronic hepatic activation of the NLRP3 inflammasome can ultimately lead to HCC; however, inflammation also plays a role in decreasing tumor growth. Some data indicate that NLRP3 inflammasome activation plays an important role in autoimmune hepatitis, but the evidence is scarce. Most researchers have reported that NLRP3 inflammasome activation is essential in liver injury induced by a variety of drugs and hepatotropic virus infection; however, few reports indicate that this pathway can play a beneficial role by inducing liver regeneration. Modulation of the NLRP3 inflammasome appears to be a suitable strategy to treat liver diseases.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina-IPN, Apartado Postal 11340, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, México
| | - Pablo Muriel
- Laboratorio de Hepatología Experimental, Departamento de Farmacología, Cinvestav-IPN, Apartado Postal 14-740, Ciudad de México, México.
| |
Collapse
|
4
|
Pereira PDC, Diniz DG, da Costa ER, Magalhães NGDM, da Silva ADJF, Leite JGS, Almeida NIP, Cunha KDN, de Melo MAD, Vasconcelos PFDC, Diniz JAP, Brites D, Anthony DC, Diniz CWP, Guerreiro-Diniz C. Genes, inflammatory response, tolerance, and resistance to virus infections in migratory birds, bats, and rodents. Front Immunol 2023; 14:1239572. [PMID: 37711609 PMCID: PMC10497949 DOI: 10.3389/fimmu.2023.1239572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Normally, the host immunological response to viral infection is coordinated to restore homeostasis and protect the individual from possible tissue damage. The two major approaches are adopted by the host to deal with the pathogen: resistance or tolerance. The nature of the responses often differs between species and between individuals of the same species. Resistance includes innate and adaptive immune responses to control virus replication. Disease tolerance relies on the immune response allowing the coexistence of infections in the host with minimal or no clinical signs, while maintaining sufficient viral replication for transmission. Here, we compared the virome of bats, rodents and migratory birds and the molecular mechanisms underlying symptomatic and asymptomatic disease progression. We also explore the influence of the host physiology and environmental influences on RNA virus expression and how it impacts on the whole brain transcriptome of seemingly healthy semipalmated sandpiper (Calidris pusilla) and spotted sandpiper (Actitis macularius). Three time points throughout the year were selected to understand the importance of longitudinal surveys in the characterization of the virome. We finally revisited evidence that upstream and downstream regulation of the inflammatory response is, respectively, associated with resistance and tolerance to viral infections.
Collapse
Affiliation(s)
- Patrick Douglas Corrêa Pereira
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Daniel Guerreiro Diniz
- Seção de Hepatologia, Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Pará, Brazil
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Emanuel Ramos da Costa
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Nara Gyzely de Morais Magalhães
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Anderson de Jesus Falcão da Silva
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Jéssica Gizele Sousa Leite
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Natan Ibraim Pires Almeida
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Kelle de Nazaré Cunha
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Mauro André Damasceno de Melo
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Pedro Fernando da Costa Vasconcelos
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém, Pará, Brazil
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - José Antonio Picanço Diniz
- Seção de Hepatologia, Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Pará, Brazil
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Daniel Clive Anthony
- Department of Pharmacology, Laboratory of Experimental Neuropathology, University of Oxford, Oxford, United Kingdom
| | - Cristovam Wanderley Picanço Diniz
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Cristovam Guerreiro-Diniz
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| |
Collapse
|
5
|
Yi YS. Regulatory Roles of Flavonoids in Caspase-11 Non-Canonical Inflammasome-Mediated Inflammatory Responses and Diseases. Int J Mol Sci 2023; 24:10402. [PMID: 37373549 DOI: 10.3390/ijms241210402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Inflammasomes are multiprotein complexes that activate inflammatory responses by inducing pyroptosis and secretion of pro-inflammatory cytokines. Along with many previous studies on inflammatory responses and diseases induced by canonical inflammasomes, an increasing number of studies have demonstrated that non-canonical inflammasomes, such as mouse caspase-11 and human caspase-4 inflammasomes, are emerging key players in inflammatory responses and various diseases. Flavonoids are natural bioactive compounds found in plants, fruits, vegetables, and teas and have pharmacological properties in a wide range of human diseases. Many studies have successfully demonstrated that flavonoids play an anti-inflammatory role and ameliorate many inflammatory diseases by inhibiting canonical inflammasomes. Others have demonstrated the anti-inflammatory roles of flavonoids in inflammatory responses and various diseases, with a new mechanism by which flavonoids inhibit non-canonical inflammasomes. This review discusses recent studies that have investigated the anti-inflammatory roles and pharmacological properties of flavonoids in inflammatory responses and diseases induced by non-canonical inflammasomes and further provides insight into developing flavonoid-based therapeutics as potential nutraceuticals against human inflammatory diseases.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
6
|
Ivanova S, Dyankov S, Karcheva-Bahchevanska D, Todorova V, Georgieva Y, Benbassat N, Ivanov K. Echinophora tenuifolia subsp. sibthorpiana-Study of the Histochemical Localization of Essential Oil. Molecules 2023; 28:molecules28072918. [PMID: 37049678 PMCID: PMC10096146 DOI: 10.3390/molecules28072918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Echinophora tenuifolia L. subsp. sibthorpiana is a perennial, aromatic plant used in traditional folk medicine and cuisine of the Mediterranean and the Middle East. However, scholars have not fully studied the pharmacological potential of the herb, and the scientific data on this plant species are limited. This study aimed to evaluate the chemical composition of the essential oil (EO) obtained from the aerial parts of E. tenuifolia subsp. sibthorpiana growing wild in Bulgaria and to perform histochemical analysis. METHODS A microscopic histochemical analysis and gas chromatography with mass spectrometry were performed. RESULTS The histochemical analysis confirmed the presence of terpenes in the stem and leaf of E. tenuifolia subsp. sibthorpiana. The phenylpropanoid methyleugenol was identified as the main compound in the EO, representing 48.13% of the total oil composition. There were also found considerable amounts of monoterpene hydrocarbons, representing 41.68% of the total EO. Alpha-phellandrene, o-cymene, and β-phellandrene were the most abundant monoterpene hydrocarbons. CONCLUSION This is the first histochemical analysis performed on E. tenuifolia subsp. sibthorpiana. This is the first report of the EO composition from Bulgarian E. tenuifolia subsp. sibthorpiana, and our results indicate some future possibilities for evaluating of the biological activity of the EO of E. tenuifolia subsp. sibthorpiana and highlight the potential future use of the EO of this plant species. E. tenuifolia L. subsp. sibthorpiana EO possesses a good potential for use as a biopesticide and repellent an environmentally friendly alternative of synthetic pesticides.
Collapse
Affiliation(s)
- Stanislava Ivanova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Stanislav Dyankov
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Diana Karcheva-Bahchevanska
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Velislava Todorova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Yoana Georgieva
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Niko Benbassat
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Kalin Ivanov
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
7
|
Wang T, Xu H, Dong R, Wu S, Guo Y, Wang D. Effectiveness of targeting the NLRP3 inflammasome by using natural polyphenols: A systematic review of implications on health effects. Food Res Int 2023; 165:112567. [PMID: 36869555 DOI: 10.1016/j.foodres.2023.112567] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/13/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Globally, inflammation and metabolic disorders pose serious public health problems and are major health concerns. It has been shown that natural polyphenols are effective in the treatment of metabolic diseases, including anti-inflammation, anti-diabetes, anti-obesity, neuron-protection, and cardio-protection. NLRP3 inflammasome, which are multiprotein complexes located within the cytosol, play an important role in the innate immune system. However, aberrant activation of the NLRP3 inflammasome were discovered as essential molecular mechanisms in triggering inflammatory processes as well as implicating it in several major metabolic diseases, such as type 2 diabetes mellitus, obesity, atherosclerosis or cardiovascular disease. Recent studies indicate that natural polyphenols can inhibit NLRP3 inflammasome activation. In this review, the progress of natural polyphenols preventing inflammation and metabolic disorders via targeting NLRP3 inflammasome is systemically summarized. From the viewpoint of interfering NLRP3 inflammasome activation, the health effects of natural polyphenols are explained. Recent advances in other beneficial effects, clinical trials, and nano-delivery systems for targeting NLRP3 inflammasome are also reviewed. NLRP3 inflammasome is targeted by natural polyphenols to exert multiple health effects, which broadens the understanding of polyphenol mechanisms and provides valuable guidance to new researchers in this field.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Ruixia Dong
- College of Horticulture, Jinling Institute of Technology, 211169 Nanjing, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hanzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| |
Collapse
|
8
|
JC2-11, a benzylideneacetophenone derivative, attenuates inflammasome activation. Sci Rep 2022; 12:22484. [PMID: 36577816 PMCID: PMC9797494 DOI: 10.1038/s41598-022-27129-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
Dysregulation of inflammasome activation induces chronic and excess inflammation resulting in several disorders, such as metabolic disorders and cancers. Thus, screening for its regulator derived from natural materials has been conducted progressively. JC2-11 (JC) was designed to enhance the antioxidant activity based on a chalcone, which is abundant in edible plants and a precursor of flavonoids. This study examined the effects of JC on inflammasome activation in human and murine macrophages. JC inhibited the secretion of interleukin (IL)-1β and lactate dehydrogenases, and the cleavage of caspase-1 and gasdermin D in response to the tested activators (i.e., NLRP3, NLRC4, AIM2, and non-canonical inflammasome triggers). In addition, JC attenuated IL-1β secretion from lipopolysaccharide (LPS)-injected mice, an inflammasome-mediating disease model. Mechanistically, JC blocked the expression of the inflammasome components during the priming step of the inflammasome, and interrupted the production of mitochondrial reactive oxygen species. In addition, JC inhibited the activity of caspase-1. In conclusion, JC may be a candidate pan-inflammasome inhibitor.
Collapse
|
9
|
ElBaset MA, Salem RS, Ayman F, Ayman N, Shaban N, Afifi SM, Esatbeyoglu T, Abdelaziz M, Elalfy ZS. Effect of Empagliflozin on Thioacetamide-Induced Liver Injury in Rats: Role of AMPK/SIRT-1/HIF-1α Pathway in Halting Liver Fibrosis. Antioxidants (Basel) 2022; 11:2152. [PMID: 36358524 PMCID: PMC9686640 DOI: 10.3390/antiox11112152] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Hepatic fibrosis causes severe morbidity and death. No viable treatment can repair fibrosis and protect the liver until now. We intended to discover the empagliflozin's (EMPA) hepatoprotective efficacy in thioacetamide (TAA)-induced hepatotoxicity by targeting AMPK/SIRT-1 activity and reducing HIF-1α. Rats were treated orally with EMPA (3 or 6 mg/kg) with TAA (100 mg/kg, IP) thrice weekly for 6 weeks. EMPA in both doses retracted the serum GGT, ALT, AST, ammonia, triglycerides, total cholesterol, and increased serum albumin. At the same time, EMPA (3 or 6 mg/kg) replenished the hepatic content of GSH, ATP, AMP, AMPK, or SIRT-1 and mitigated the hepatic content of MDA, TNF-α, IL-6, NF-κB, or HIF-1α in a dose-dependent manner. Likewise, hepatic photomicrograph stained with hematoxylin and eosin or Masson trichrome stain of EMPA (3 or 6 mg/kg) revealed marked regression of the hepatotoxic effect of TAA with minimal injury. Similarly, in rats given EMPA (3 or 6 mg/kg), the immunohistochemically of hepatic photomicrograph revealed minimal stain of either α-SMA or caspase-3 compared to the TAA group. Therefore, we concluded that EMPA possessed an antifibrotic effect by targeting AMPK/SIRT-1 activity and inhibiting HIF-1α. The present study provided new insight into a novel treatment of liver fibrosis.
Collapse
Affiliation(s)
- Marwan A. ElBaset
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo P.O. Box 12622, Egypt
| | - Rana S. Salem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October University for Modern Science and Arts, Cairo 12451, Egypt
| | - Fairouz Ayman
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October University for Modern Science and Arts, Cairo 12451, Egypt
| | - Nadeen Ayman
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October University for Modern Science and Arts, Cairo 12451, Egypt
| | - Nooran Shaban
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October University for Modern Science and Arts, Cairo 12451, Egypt
| | - Sherif M. Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Mahmoud Abdelaziz
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October University for Modern Science and Arts, Cairo 12451, Egypt
| | - Zahraa S. Elalfy
- Pathology Department Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo P.O. Box 12622, Egypt
| |
Collapse
|
10
|
Ramadan Q, Alawami H, Zourob M. Microfluidic system for immune cell activation and inflammatory cytokine profiling: Application to screening of dietary supplements for anti-inflammatory properties. BIOMICROFLUIDICS 2022; 16:054105. [PMID: 36238726 PMCID: PMC9553286 DOI: 10.1063/5.0105187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
A versatile and reconfigurable microfluidic chip has been fully in-house fabricated and tested for immune cell culture, activation, and quantification of multi-cytokine secretion. The chip comprises three vertically stacked fluidic layers for perfusion, cell culture and cytokine capture, and quantification, respectively. The perfused media were separated from the cell culture by employing a biomimetic membrane as a model of the intestinal epithelial layer. Time-resolved detection and quantification of several secreted cytokines were enabled by an array of parallel channels, which are interfaced with the cell culture by a porous membrane. Each channel hosts magnetic beads conjugated with a specific antibody against the cytokine of interest. Magnetic bead-assisted agitation enables homogenization of the cell culture supernatant and perfusion of the cytokines through the bottom immune assay channels. As a proof of concept, THP-1 monocytic cells and their induced macrophages were used as a model of immune-responsive cells. The cells were sequentially stimulated by lipopolysaccharides and two dietary supplements, namely, docosahexaenoic acid (DHA) and curcumin, which are known to possess inflammasome-modulating activity. Both DHA and curcumin have shown anti-inflammatory effects by downregulating the secretion of TNFα, IL-6, IL-1β, and IL-10. Treatment of the cells with DHA and curcumin together lowered the TNFα secretion by ∼54%. IL-6 secretion was lowered upon cell treatment with curcumin, DHA, or DHA and curcumin co-treatment by 69%, 78%, or 67%, respectively. IL-1β secretion was lowered by 67% upon curcumin treatment and 70% upon curcumin and DHA co-treatment. IL-10 secretion was also lowered upon treating the cells with DHA, curcumin, or DHA and curcumin together by 7%, 53%, or 54%, respectively. The limit of the detection of the assay was determined as 25 pg/ml. Four cytokine profiling was demonstrated, but the design of the chip can be improved to allow a larger number of cytokines to be simultaneously detected from the same set of cells.
Collapse
Affiliation(s)
- Qasem Ramadan
- College of Science and General Studies, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Hawra Alawami
- College of Science and General Studies, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Mohammed Zourob
- College of Science and General Studies, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
11
|
Onaolapo OJ, Olofinnade AT, Ojo FO, Onaolapo AY. Neuroinflammation and Oxidative Stress in Alzheimer's Disease; Can Nutraceuticals and Functional Foods Come to the Rescue? Antiinflamm Antiallergy Agents Med Chem 2022; 21:75-89. [PMID: 36043770 DOI: 10.2174/1871523021666220815151559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Alzheimer's disease (AD), the most prevalent form of age-related dementia, is typified by progressive memory loss and spatial awareness with personality changes. The increasing socioeconomic burden associated with AD has made it a focus of extensive research. Ample scientific evidence supports the role of neuroinflammation and oxidative stress in AD pathophysiology, and there is increasing research into the possible role of anti-inflammatory and antioxidative agents as disease modifying therapies. While, the result of numerous preclinical studies has demonstrated the benefits of anti-inflammatory agents, these benefits however have not been replicated in clinical trials, necessitating a further search for more promising anti-inflammatory agents. Current understanding highlights the role of diet in the development of neuroinflammation and oxidative stress, as well as the importance of dietary interventions and lifestyle modifications in mitigating them. The current narrative review examines scientific literature for evidence of the roles (if any) of dietary components, nutraceuticals and functional foods in the prevention or management of AD. It also examines how diet/ dietary components could modulate oxidative stress/inflammatory mediators and pathways that are crucial to the pathogenesis and/or progression of AD.
Collapse
Affiliation(s)
- Olakunle J Onaolapo
- Department of Pharmacology, Behavioural Neuroscience Unit, Neuropharmacology Subdivision, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Anthony T Olofinnade
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Clinical Sciences, College of Medicine, Lagos State University, Ikeja, Lagos State, Nigeria
| | - Folusho O Ojo
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Adejoke Y Onaolapo
- Department of Anatomy, Behavioural Neuroscience Unit, Neurobiology Subdivision, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
12
|
Martinez-Lopez A, Rivero-Pino F, Villanueva A, Toscano R, Grao-Cruces E, Marquez-Paradas E, Martin ME, Montserrat-de la Paz S, Millan-Linares MC. Kiwicha ( Amaranthus caudatus L.) protein hydrolysates reduce intestinal inflammation by modulating the NLRP3 inflammasome pathway. Food Funct 2022; 13:11604-11614. [DOI: 10.1039/d2fo02177c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amaranthus caudatus hydrolysates are investigated as a valuable source of active peptides able to take part as functional ingredients in food and nutraceutical preparations to prevent intestinal inflammation.
Collapse
Affiliation(s)
- Alicia Martinez-Lopez
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Alvaro Villanueva
- Department of Food & Health, Instituto of Fat (IG-CSIC), Ctra. Utrera Km 1, 41013 Seville, Spain
| | - Rocio Toscano
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Elena Grao-Cruces
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Elvira Marquez-Paradas
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Maria E. Martin
- Department of Cell Biology, Faculty of Biology, University of Seville, Av. Reina Mercedes s/n, 41012 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Maria C. Millan-Linares
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|