1
|
Ciaglia T, Miranda MR, Di Micco S, Vietri M, Smaldone G, Musella S, Di Sarno V, Auriemma G, Sardo C, Moltedo O, Pepe G, Bifulco G, Ostacolo C, Campiglia P, Manfra M, Vestuto V, Bertamino A. Neuroprotective Potential of Indole-Based Compounds: A Biochemical Study on Antioxidant Properties and Amyloid Disaggregation in Neuroblastoma Cells. Antioxidants (Basel) 2024; 13:1585. [PMID: 39765912 PMCID: PMC11673510 DOI: 10.3390/antiox13121585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/15/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Based on the established neuroprotective properties of indole-based compounds and their significant potential as multi-targeted therapeutic agents, a series of synthetic indole-phenolic compounds was evaluated as multifunctional neuroprotectors. Each compound demonstrated metal-chelating properties, particularly in sequestering copper ions, with quantitative analysis revealing approximately 40% chelating activity across all the compounds. In cellular models, these hybrid compounds exhibited strong antioxidant and cytoprotective effects, countering reactive oxygen species (ROS) generated by the Aβ(25-35) peptide and its oxidative byproduct, hydrogen peroxide, as demonstrated by quantitative analysis showing on average a 25% increase in cell viability and a reduction in ROS levels to basal states. Further analysis using thioflavin T fluorescence assays, circular dichroism, and computational studies indicated that the synthesized derivatives effectively promoted the self-disaggregation of the Aβ(25-35) fragment. Taken together, these findings suggest a unique profile of neuroprotective actions for indole-phenolic derivatives, combining chelating, antioxidant, and anti-aggregation properties, which position them as promising compounds for the development of multifunctional agents in Alzheimer's disease therapy. The methods used provide reliable in vitro data, although further in vivo validation and assessment of blood-brain barrier penetration are needed to confirm therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Simone Di Micco
- European Biomedical Research Institute of Salerno (EBRIS), Via Salvatore de Renzi 50, 84125 Salerno, Italy;
| | - Mariapia Vietri
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Gerardina Smaldone
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Simona Musella
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Giulia Auriemma
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Carla Sardo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Ornella Moltedo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Michele Manfra
- Department of Health Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| |
Collapse
|
2
|
Li Z, Zhu J, Ouyang H. Research progress of traditional Chinese medicine in improving hepatic fibrosis based on inhibiting pathological angiogenesis. Front Pharmacol 2023; 14:1303012. [PMID: 38155904 PMCID: PMC10754536 DOI: 10.3389/fphar.2023.1303012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Hepatic fibrosis is the formation of scar tissue in the liver. This scar tissue replaces healthy liver tissue and can lead to liver dysfunction and failure if left untreated. It is usually caused by chronic liver disease, such as hepatitis B or C, alcohol abuse, or non-alcoholic fatty liver disease. Pathological angiogenesis plays a crucial role in the development of hepatic fibrosis by promoting the growth of new blood vessels in the liver. These new vessels increase blood flow to the damaged areas of the liver, which triggers the activation of hepatic stellate cells (HSCs). HSCs are responsible for producing excess collagen and other extracellular matrix proteins that contribute to the development of fibrosis. Pathological angiogenesis plays a crucial role in the development of hepatic fibrosis by promoting the growth of new blood vessels in the liver. These new vessels increase blood flow to the damaged areas of the liver, which triggers the activation of HSCs. HSCs are responsible for producing excess collagen and other extracellular matrix proteins that contribute to the development of fibrosis. Traditional Chinese medicine (TCM) has been found to target pathological angiogenesis, thereby providing a potential treatment option for hepatic fibrosis. Several studies have demonstrated that TCM exhibits anti-angiogenic effects by inhibiting the production of pro-angiogenic factors, such as vascular endothelial growth factor and angiopoietin-2, and by reducing the proliferation of endothelial cells. Reviewing and highlighting the unique TCM recognition of treating hepatic fibrosis by targeting pathological angiogenesis may shed light on future hepatic fibrosis research.
Collapse
|
3
|
Subramaniyan V, Lubau NSA, Mukerjee N, Kumarasamy V. Alcohol-induced liver injury in signalling pathways and curcumin's therapeutic potential. Toxicol Rep 2023; 11:355-367. [PMID: 37868808 PMCID: PMC10585641 DOI: 10.1016/j.toxrep.2023.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
Confronting the profound public health concern of alcohol-induced liver damage calls for inventive therapeutic measures. The social, economic, and clinical ramifications are extensive and demand a comprehensive understanding. This thorough examination uncovers the complex relationship between alcohol intake and liver damage, with a special emphasis on the pivotal roles of the Toll-like receptor 4 (TLR4)/NF-κB p65 and CYP2E1/ROS/Nrf2 signalling networks. Different alcohol consumption patterns, determined by a myriad of factors, have significant implications for liver health, leading to a spectrum of adverse effects. The TLR4/NF-κB p65 pathway, a principal regulator of inflammation and immune responses, significantly contributes to various disease states when its balance is disrupted. Notably, the TLR4/MD-2-TNF-α pathway has been linked to non-alcohol related liver disease, while NF-κB activation is associated with alcohol-induced liver disease (ALD). The p65 subunit of NF-κB, primarily responsible for the release of inflammatory cytokines, hastens the progression of ALD. Breakthrough insights suggest that curcumin, a robust antioxidant and anti-inflammatory compound sourced from turmeric, effectively disrupts the TLR4/NF-κB p65 pathway. This heralds a new approach to managing alcohol-induced liver damage. Initial clinical trials support curcumin's therapeutic potential, highlighting its ability to substantially reduce liver enzyme levels. The narrative surrounding alcohol-related liver injury is gradually becoming more intricate, intertwining complex signalling networks such as TLR4/NF-κB p65 and CYP2E1/ROS/Nrf2. The protective role of curcumin against alcohol-related liver damage marks the dawn of new treatment possibilities. However, the full realisation of this promising therapeutic potential necessitates rigorous future research to definitively understand these complex mechanisms and establish curcumin's effectiveness and safety in managing alcohol-related liver disorders.
Collapse
Affiliation(s)
- Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India
| | - Natasha Sura Anak Lubau
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary Collage, Kolkata, West Bengal 700118, India
- Department of Health Sciences, Novel Global Community and Educational Foundation, Australia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Taghinejad Z, Kazemi T, Fadaee M, Farshdousti Hagh M, Solali S. Pharmacological and therapeutic potentials of cordycepin in hematological malignancies. Biochem Biophys Res Commun 2023; 678:135-143. [PMID: 37634411 DOI: 10.1016/j.bbrc.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/16/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023]
Abstract
Hematological malignancies(HMs) are highly heterogeneous diseases with globally rising incidence. Despite major improvements in the management of HMs, conventional therapies have limited efficacy, and relapses with high mortality rates are still frequent. Cordycepin, a nucleoside analog extracted from Cordyceps species, represents a wide range of therapeutic effects, including anti-inflammatory, anti-tumor, and anti-metastatic activities. Cordycepin induces apoptosis in different subtypes of HMs by triggering adenosine receptors, death receptors, and several vital signaling pathways such as MAPK, ERK, PI3K, AKT, and GSK-3β/β-catenin. This review article summarizes the impact of utilizing cordycepin on HMs, and highlights its potential as a promising avenue for future cancer research based on evidence from in vitro and in vivo studies, as well as clinical trials.
Collapse
Affiliation(s)
- Zahra Taghinejad
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Manouchehr Fadaee
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Majid Farshdousti Hagh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Saeed Solali
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Shi L. Association of energy-adjusted dietary inflammatory index and frailty in older adults with nonalcoholic fatty liver disease. Exp Gerontol 2023; 182:112296. [PMID: 37734669 DOI: 10.1016/j.exger.2023.112296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Energy-adjusted dietary inflammatory index (E-DII) can represent daily inflammatory dietary components and chronic inflammatory response is an important pathogenesis of aging, nonalcoholic fatty liver disease (NAFLD) and frailty. Therefore, the purpose of this study is to explore the association of E-DII and frailty in older adults with NAFLD. METHODS This cross-sectional study utilized data from the National Health and Nutrition Examination Survey (2005-2016) to investigate the association between E-DII and frailty. The NAFLD status was determined using the US Fatty Liver Index (FLI) value ≥30. The relationship between E-DII and frailty was examined through multivariate weighted logistic regression analysis and smooth curve fitting. Subgroup analyses were conducted, considering various demographic and clinical variables. RESULTS Our final analysis included 1586 individuals, with an average age of 69.42 years, and 53.15 % of them were males. The overall prevalence of frailty in the study population was 39.42 %. Smooth curve fitting analysis demonstrated a nearly linear relationship between E-DII and H. pylori. Utilizing multivariate weighted logistic regression analysis, we found that the odds ratio (OR) of E-DII for frailty was 1.08 (95%CI, 1.03-1.15). Subgroup analysis further confirmed that E-DII independently increased the risk of frailty. CONCLUSION Higher E-DII levels were found to be associated with an increased risk of frailty in older adults with NAFLD. However, further studies are required to fully elucidate the precise mechanisms underlying the relationship between E-DII and frailty.
Collapse
Affiliation(s)
- Lin Shi
- Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|