1
|
Mulkeen SC, Saha S, Ferrara CR, Bibeva V, Wood MC, Bai JDK, Peres TV, Martinez-Martinez D, Montoya A, Shliaha P, Cabreiro F, Montrose DC. Reducing Dietary Protein Enhances the Antitumor Effects of Chemotherapy through Immune-Mediated Mechanisms. Mol Cancer Ther 2025:754238. [PMID: 40105196 PMCID: PMC7617599 DOI: 10.1158/1535-7163.mct-24-0545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/06/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Diet is believed to be an important mediator of oncogenesis and response to anti-cancer therapies, although no evidence-based dietary guidelines exist for patients with cancer. Limiting protein intake can suppress tumor growth by both inducing nutrient stress and enhancing anti-tumor immunity. However, little is known about the impact of reducing dietary protein on the efficacy of chemotherapy, the most widely used anti-cancer treatment. Here, we present evidence that reducing protein intake in mice by 50% stops the growth of established tumors, in parallel with inducing a stress response and DNA damage. Further, a reduced protein (RP) diet enhances tumor regression upon treatment with 5-fluorouracil (5-FU). This effect is accompanied by elevated apoptosis and suppressed mitosis of tumor cells. Proteomic analysis of tumors revealed marked differences between 5-FU treated mice fed control or RP diet including decreased abundance of proteins that mediate DNA repair and replication in mice consuming RP. In vitro studies mimicking amino acid changes found in tumors from RP-fed mice showed that cGAS/STING1 signaling, including transcription of Interferon beta 1, was maximally increased in 5-FU treated cells cultured in modified amino acid medium. These findings correlated with enhanced immune cell influx into tumors from mice treated with 5-FU while consuming a RP diet, an effect that was causally linked to improved response to chemotherapy. Collectively, these findings suggest that reducing dietary protein in cancer patients may enhance the efficacy of chemotherapy by promoting anti-tumor immunity.
Collapse
Affiliation(s)
- Samantha C. Mulkeen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Suchandrima Saha
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Carmen R. Ferrara
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Vladimira Bibeva
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Michael C. Wood
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Ji Dong K Bai
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Tanara V. Peres
- Institute of Clinical Sciences, Imperial College London, London, UK
| | | | - Alex Montoya
- Institute of Clinical Sciences, Imperial College London, London, UK
| | - Pavel Shliaha
- Institute of Clinical Sciences, Imperial College London, London, UK
| | - Filipe Cabreiro
- Institute of Clinical Sciences, Imperial College London, London, UK
- CECAD Research Cluster, University of Cologne, Cologne, Germany
| | - David C. Montrose
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
- Stony Brook Cancer Center, Stony Brook, NY, USA
| |
Collapse
|
2
|
Aden D, Sureka N, Zaheer S, Chaurasia JK, Zaheer S. Metabolic Reprogramming in Cancer: Implications for Immunosuppressive Microenvironment. Immunology 2025; 174:30-72. [PMID: 39462179 DOI: 10.1111/imm.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
Cancer is a complex and heterogeneous disease characterised by uncontrolled cell growth and proliferation. One hallmark of cancer cells is their ability to undergo metabolic reprogramming, which allows them to sustain their rapid growth and survival. This metabolic reprogramming creates an immunosuppressive microenvironment that facilitates tumour progression and evasion of the immune system. In this article, we review the mechanisms underlying metabolic reprogramming in cancer cells and discuss how these metabolic alterations contribute to the establishment of an immunosuppressive microenvironment. We also explore potential therapeutic strategies targeting metabolic vulnerabilities in cancer cells to enhance immune-mediated anti-tumour responses. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02044861, NCT03163667, NCT04265534, NCT02071927, NCT02903914, NCT03314935, NCT03361228, NCT03048500, NCT03311308, NCT03800602, NCT04414540, NCT02771626, NCT03994744, NCT03229278, NCT04899921.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical Science and Research, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
3
|
Xiao W, Xu C. Cystine/cysteine metabolism regulates the progression and response to treatment of triple‑negative breast cancer (Review). Oncol Lett 2024; 28:521. [PMID: 39268159 PMCID: PMC11391256 DOI: 10.3892/ol.2024.14654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/04/2024] [Indexed: 09/15/2024] Open
Abstract
Breast cancer is the most prevalent neoplasm affecting women globally, of which a notable proportion of cases are triple-negative breast cancer (TNBC). However, there are limited curative treatment options for patients with TNBC, despite advancements in the field. Amino acids and amino acid transporters serve vital roles in the regulation of tumor metabolism. Notably, cystine and cysteine can interconvert via a redox reaction, with cysteine exerting control on cell survival and growth and exogenous cystine serving a crucial role in the proliferation of numerous types of cancers. Breast cancer has been reported to disrupt the cystine/cysteine metabolism pathway, as cystine and cysteine transporters affect the development and growth of tumors. The present review aims to provide a comprehensive overview of the metabolic pathways involving cystine and cysteine in normal and TNBC cells. Furthermore, the roles of cystine and cysteine transporters in TNBC progression and metastasis and their potential as therapeutic targets for treatment of TNBC are evaluated.
Collapse
Affiliation(s)
- Wanting Xiao
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Chaoyang Xu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
4
|
Garcia MB, Thandapani P. Nutritional intervention as adjuvant therapy for T-cell acute lymphoblastic leukemia. Blood Adv 2024; 8:5266-5267. [PMID: 39093954 PMCID: PMC11492464 DOI: 10.1182/bloodadvances.2024013607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Affiliation(s)
- Miriam B. Garcia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Palaniraja Thandapani
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
5
|
Ahn SH, Jang SK, Kim YJ, Kim G, Park KS, Park IC, Jin HO. Amino acid deprivation induces TXNIP expression by NRF2 downregulation. IUBMB Life 2024; 76:212-222. [PMID: 38054509 DOI: 10.1002/iub.2792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023]
Abstract
Thioredoxin-interacting protein (TXNIP) is sensitive to oxidative stress and is involved in the pathogenesis of various metabolic, cardiovascular, and neurodegenerative disorders. Therefore, several studies have suggested that TXNIP is a promising therapeutic target for several diseases, particularly cancer and diabetes. However, the regulation of TXNIP expression under amino acid (AA)-restricted conditions is not well understood. In the present study, we demonstrated that TXNIP expression was promoted by the deprivation of AAs, especially arginine, glutamine, lysine, and methionine, in non-small cell lung cancer (NSCLC) cells. Interestingly, we determined that increased TXNIP expression induced by AA deprivation was associated with nuclear factor erythroid 2-related factor 2 (NRF2) downregulation, but not with activating transcription factor 4 (ATF4) activation. Furthermore, N-acetyl-l-cysteine (NAC), a scavenger of reactive oxygen species (ROS), suppressed TXNIP expression in NSCLC cells deprived of AA. Collectively, the induction of TXNIP expression by AA deprivation was mediated by ROS production, potentially through NRF2 downregulation. Our findings suggest that TXNIP expression may be associated with the redox homeostasis of AA metabolism and provide a possible rationale for a therapeutic strategy to treat cancer with AA restriction.
Collapse
Affiliation(s)
- Se Hee Ahn
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
- Department of Biological Engineering, Konkuk University, Seoul, Republic of Korea
| | - Se-Kyeong Jang
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Yu Jin Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
- Department of Biological Engineering, Konkuk University, Seoul, Republic of Korea
| | - Gyeongmi Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, Konkuk University, Seoul, Republic of Korea
| | - In-Chul Park
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Hyeon-Ok Jin
- KIRAMS Radiation Biobank, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| |
Collapse
|
6
|
Xiao YL, Gong Y, Qi YJ, Shao ZM, Jiang YZ. Effects of dietary intervention on human diseases: molecular mechanisms and therapeutic potential. Signal Transduct Target Ther 2024; 9:59. [PMID: 38462638 PMCID: PMC10925609 DOI: 10.1038/s41392-024-01771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024] Open
Abstract
Diet, serving as a vital source of nutrients, exerts a profound influence on human health and disease progression. Recently, dietary interventions have emerged as promising adjunctive treatment strategies not only for cancer but also for neurodegenerative diseases, autoimmune diseases, cardiovascular diseases, and metabolic disorders. These interventions have demonstrated substantial potential in modulating metabolism, disease trajectory, and therapeutic responses. Metabolic reprogramming is a hallmark of malignant progression, and a deeper understanding of this phenomenon in tumors and its effects on immune regulation is a significant challenge that impedes cancer eradication. Dietary intake, as a key environmental factor, can influence tumor metabolism. Emerging evidence indicates that dietary interventions might affect the nutrient availability in tumors, thereby increasing the efficacy of cancer treatments. However, the intricate interplay between dietary interventions and the pathogenesis of cancer and other diseases is complex. Despite encouraging results, the mechanisms underlying diet-based therapeutic strategies remain largely unexplored, often resulting in underutilization in disease management. In this review, we aim to illuminate the potential effects of various dietary interventions, including calorie restriction, fasting-mimicking diet, ketogenic diet, protein restriction diet, high-salt diet, high-fat diet, and high-fiber diet, on cancer and the aforementioned diseases. We explore the multifaceted impacts of these dietary interventions, encompassing their immunomodulatory effects, other biological impacts, and underlying molecular mechanisms. This review offers valuable insights into the potential application of these dietary interventions as adjunctive therapies in disease management.
Collapse
Affiliation(s)
- Yu-Ling Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yue Gong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ying-Jia Qi
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|