1
|
Ning J, Yang M, Zhu Q, Liu X, Li M, Luo X, Yue X. Revealing the diversity of endogenous peptides and parent proteins in human colostrum and mature milk through peptidomics analysis. Food Chem 2024; 445:138651. [PMID: 38359565 DOI: 10.1016/j.foodchem.2024.138651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Endogenous peptides and their parent proteins are important nutritional components with diverse biological functions. The objective of this study was to analyze and compare endogenous peptides and parent proteins found in human colostrum (HC) and human mature milk (HM) using a 4D label-free technique. In total, 5162 and 940 endogenous peptides derived from 258 parent proteins were identified in human milk by database (DB) search and de novo, respectively. Among these peptides, 2446 differentially expressed endogenous peptides with various bioactivities were identified. The Gene Ontology analysis unveiled the cellular components, biological processes, and molecular functions associated with these parent proteins. Metabolic pathway analysis suggested that neutrophil extracellular trap formation had the greatest significance with 24 parent proteins. These findings will offer a fresh perspective on the development of infant formula powder, highlighting the potential for incorporating these changes to enhance its nutritional composition and benefits.
Collapse
Affiliation(s)
- Jianting Ning
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Qing Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoyu Liu
- Department of Obstetrics and Gynaecology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xue Luo
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
2
|
Thesbjerg MN, Sundekilde UK, Poulsen NA, Larsen LB, Nielsen SDH. A novel proteomic approach for the identification and relative quantification of disulfide-bridges in the human milk proteome. J Proteomics 2024; 301:105194. [PMID: 38723850 DOI: 10.1016/j.jprot.2024.105194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
This study explores the disulfide bridges present in the human milk proteome by a novel approach permitting both positional identification and relative quantification of the disulfide bridges. Human milk from six donors was subjected to trypsin digestion without reduction. The digested human milk proteins were analyzed by nanoLC-timsTOF Pro combined with data analysis using xiSEARCH. A total of 85 unique disulfide bridges were identified in 25 different human milk proteins. The total relative abundance of disulfide bridge-containing peptides constituted approximately 5% of the total amount of tryptic-peptides. Seven inter-molecular disulfide bridges were identified between either α-lactalbumin and lactotransferrin (5) or αS1-casein and κ-casein (2). All cysteines involved in the observed disulfide bridges of α-lactalbumin and lactotransferrin were mapped onto protein models using AlphaFold2 Multimer to estimate the length of the observed disulfide bridges. The lengths of the disulfide bridges of lactotransferrin indicate a potential for multi- or poly-merization of lactotransferrin. The high number of intramolecular lactotransferrin disulfide bridges identified, suggests that these are more heterogeneous than previously presumed. SIGNIFICANCE: Disulfide-bridges in the human milk proteome are an often overseen post-transaltional modification. Thus, mapping the disulfide-bridges, their positions and relative abundance, are valuable new knowledge needed for an improved understanding of human milk protein behaviour. Although glycosylation and phosphorylation have been described, even less information is available on the disulfide bridges and the disulfide-bridge derived protein complexes. This is important for future work in precision fermentation for recombinant production of human milk proteins, as this will highlight which disulfide-bridges are naturally occouring in human milk proteins. Further, this knowledge would be of value for the infant formula industry as it provides more information on how to humanize bovine-milk based infant formula. The novel method developed here can be broadly applied in other biological systems as the disulfid-brigdes are important for the structure and functionality of proteins.
Collapse
Affiliation(s)
- Martin Nørmark Thesbjerg
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark; Sino-Danish College (SDC), University of Chinese Academy of Science, Huairou District, Beijing 101408, China.
| | | | - Nina Aagaard Poulsen
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark
| | - Lotte Bach Larsen
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark
| | | |
Collapse
|
3
|
Thesbjerg MN, Poulsen KO, Astono J, Poulsen NA, Larsen LB, Nielsen SDH, Stensballe A, Sundekilde UK. O-linked glycosylations in human milk casein and major whey proteins during lactation. Int J Biol Macromol 2024; 267:131613. [PMID: 38642686 DOI: 10.1016/j.ijbiomac.2024.131613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/22/2024]
Abstract
As glycosylations are difficult to analyze, their roles and effects are poorly understood. Glycosylations in human milk (HM) differ across lactation. Glycosylations can be involved in antimicrobial activities and may serve as food for beneficial microorganisms. This study aimed to identify and analyze O-linked glycans in HM by high-throughput mass spectrometry. 184 longitudinal HM samples from 66 donors from day 3 and months 1, 2, and 3 postpartum were subjected to a post-translational modification specific enrichment-based strategy using TiO2 and ZrO2 beads for O-linked glycopeptide enrichment. β-CN was found to be a major O-linked glycoprotein, additionally, αS1-CN, κ-CN, lactotransferrin, and albumin also contained O-linked glycans. As glycosyltransferases and glycosidases are involved in assembling the glycans including O-linked glycosylations, these were further investigated. Some glycosyltransferases and glycosidases were found to be significantly decreasing through lactation, including two O-linked glycan initiator enzymes (GLNT1 and GLNT2). Despite their decrease, the overall level of O-linked glycans remained stable in HM over lactation. Three different motifs for O-linked glycosylation were enriched in HM proteins: Gly-Xxx-Xxx-Gly-Ser/Thr, Arg-Ser/Thr and Lys-Ser/Thr. Further O-linked glycan motifs on β-CN were observed to differ between intact proteins and endogenous peptides in HM.
Collapse
Affiliation(s)
- Martin Nørmark Thesbjerg
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark; Sino-Danish College (SDC), University of Chinese Academy of Science, Huairou District, Beijing 101408, China.
| | - Katrine Overgaard Poulsen
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark; Sino-Danish College (SDC), University of Chinese Academy of Science, Huairou District, Beijing 101408, China
| | - Julie Astono
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark
| | - Nina Aagaard Poulsen
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark
| | - Lotte Bach Larsen
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark
| | | | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Selma Lagerløfsvej 249, DK-9260 Gistrup, Denmark; Clinical cancer center, Aalborg University Hospital, 9000 Aalborg, Denmark
| | | |
Collapse
|