1
|
Zhang Y, Zou W, Zhou Y, Chen J, Hu Y, Wu F. Pamoic acid and carbenoxolone specifically inhibit CRISPR/Cas9 in bacteria, mammalian cells, and mice in a DNA topology-specific manner. Genome Biol 2025; 26:75. [PMID: 40156040 PMCID: PMC11951523 DOI: 10.1186/s13059-025-03521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 02/28/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Regulation of the target DNA cleavage activity of CRISPR/Cas has naturally evolved in a few bacteria or bacteriophages but is lacking in higher species. Thus, identification of bioactive agents and mechanisms that can suppress the activity of Cas9 is urgently needed to rebalance this new genetic pressure. RESULTS Here, we identify four specific inhibitors of Cas9 by screening 4607 compounds that could inhibit the endonuclease activity of Cas9 via three distinct mechanisms: substrate-competitive and protospacer adjacent motif (PAM)-binding site-occupation; substrate-targeting; and sgRNA-targeting mechanisms. These inhibitors inhibit, in a dose-dependent manner, the activity of Streptococcus pyogenes Cas9 (SpyCas9), Staphylococcus aureus Cas9 (SauCas9), and SpyCas9 nickase-based BE4 base editors in in vitro purified enzyme assays, bacteria, mammalian cells, and mice. Importantly, pamoic acid and carbenoxolone show DNA-topology selectivity and preferentially inhibit the cleavage of linear DNA compared with a supercoiled plasmid. CONCLUSIONS These pharmacologically selective inhibitors and new mechanisms offer new tools for controlling the DNA-topology selective activity of Cas9.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wentao Zou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yueyang Zhou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiaqi Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Youtian Hu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Chien YH, Lin CY, Hsu SY, Chen YH, Wu HT, Huang SW, Chen YC. Effects of Nonnutritive Sweeteners on Body Composition Changes during Pubertal Growth. Nutrients 2023; 15:nu15102319. [PMID: 37242202 DOI: 10.3390/nu15102319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The effects of consuming specific types of nonnutritive sweeteners (NNSs) on adiposity changes in children have remained inconsistent. In this study, we aimed to investigate the effects of the intake of different kinds of NNSs on long-term adiposity changes during pubertal growth. Furthermore, we examined the above relationships among different sexes, pubertal stages, and levels of obesity. A total of 1893 6-15-year-old adults were recruited and followed-up every 3 months. The NNS-FFQ (Food Frequency Questionnaire) was conducted and urine samples were collected to investigate the effects of the selected sweeteners, which included acesulfame potassium, aspartame, sucralose, glycyrrhizin, steviol glycosides, and sorbitol. Multivariate linear mixed-effects models were used to examine the relationship between NNS intake and body composition. The consumption of aspartame, sucralose, glycyrrhizin, stevioside, and sorbitol was associated with decreased fat mass and increased fat-free mass. In the highest tertile group, the effects of NNS consumption on fat mass corresponded to values of -1.21 (95% CI: -2.04 to -0.38) for aspartame, -0.62 (95% CI: -1.42 to 0.19) for sucralose, -1.26 (95% CI: -2.05 to -0.47) for glycyrrhizin, -0.90 (95% CI: -2.28 to 0.48) for stevioside, and -0.87 (95% CI: -1.67 to -0.08) for sorbitol, while the effects on fat-free mass corresponded to values of 1.20 (95% CI: 0.36 to -0.38) for aspartame, 0.62 (95% CI: -0.19 to 1.43) for sucralose, 1.27 (95% CI: 0.48 to 2.06) for glycyrrhizin, 0.85 (95% CI: -0.53 to 2.23) for stevioside, and 0.87 (95% CI: 0.08 to 1.67) for sorbitol. Particularly, aspartame and sorbitol revealed a dose-responsiveness effect. The above finding was more prominent among girls than boys. Moreover, fat mass was significantly reduced in normal-weight children who consumed a moderate amount of aspartame and a large amount of glycyrrhizin and sorbitol compared with obese children. In conclusion, the NNS-specific and sex-specific effects of long-term NNS consumption revealed associations of decreasing fat mass and increasing fat-free mass for children undergoing pubertal growth.
Collapse
Affiliation(s)
- Yu-Hsin Chien
- Department of Education, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Chia-Yuan Lin
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Food Science, National Taiwan Ocean University, Keelung City 202301, Taiwan
| | - Shih-Yuan Hsu
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yue-Hwa Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Hung-Tsung Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Shiu-Wen Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Medical Research, Research Center of Thoracic Medicine and Asthma, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Yang-Ching Chen
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Department of Family Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
3
|
Wang Y, Xu W, Zhang J, Liu J, Wang Z, Liu Y, Mai K, Ai Q. Effects of Glycyrrhizin (GL) Supplementation on Survival, Growth Performance, Expression of Feeding-Related Genes, Activities of Digestive Enzymes, Antioxidant Capacity, and Expression of Inflammatory Factors in Large Yellow Croaker ( Larimichthys crocea) Larvae. AQUACULTURE NUTRITION 2022; 2022:5508120. [PMID: 36860459 PMCID: PMC9973149 DOI: 10.1155/2022/5508120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/01/2022] [Accepted: 11/07/2022] [Indexed: 06/18/2023]
Abstract
A 30-day feeding trial was conducted to determine the effects of dietary glycyrrhizin (GL) on survival, growth performance, expression of feeding-related genes, activities of digestive enzymes, antioxidant capacity, and expression of inflammatory factors of large yellow croaker larvae with an initial weight of 3.78 ± 0.27 mg. Four 53.80% crude protein and 16.40% crude lipid diets were formulated with supplementation of 0%, 0.005%, 0.01%, and 0.02% GL, respectively. Results indicated that larvae fed diets with GL had higher survival rate and specific growth rate than the control (P < 0.05). Compared with the control, the mRNA expression of orexigenic factor genes including neuropeptide Y (npy) and agouti-related protein (agrp) were significantly increased in larvae fed the diet with 0.005% GL, while the mRNA expression of anorexigenic factor genes including thyrotropin-releasing hormone (trh), cocaine and amphetamine regulated transcript (cart), and leptin receptor (lepr) were significantly decreased in larvae fed the diet with 0.005% GL (P < 0.05). The trypsin activity in larvae fed the diet with 0.005% GL was significantly higher than the control (P < 0.05). The alkaline phosphatase (AKP) activity in larvae fed the diet with 0.01% GL was significantly higher than the control (P < 0.05). A clear increase of total glutathione (T-GSH) content, activities of superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) was observed in larvae fed the diet with 0.01% GL compared with the control (P < 0.05). Moreover, the mRNA expression of interleukin-1β (il-1β) and interleukin-6 (il-6) (proinflammatory genes) in larvae fed the diet with 0.02% GL were significantly lower than the control (P < 0.05). In conclusion, the supplementation of 0.005% -0.01% GL could enhance the expression of orexigenic factor genes, activities of digestive enzymes and antioxidant capacity, ultimately improving the survival, and growth performance of large yellow croaker larvae.
Collapse
Affiliation(s)
- Yuntao Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Wenxuan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Jianmin Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Jiahui Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Zhen Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Yongtao Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, China
| |
Collapse
|
4
|
Asseri SM, Elsherbiny NM, El-Sherbiny M, Sherif IO, Alsamman AM, Maysarah NM, Elsherbini AM. Glycyrrhizic acid ameliorates submandibular gland oxidative stress, autophagy and vascular dysfunction in rat model of type 1 diabetes. Sci Rep 2022; 12:725. [PMID: 35031620 PMCID: PMC8760281 DOI: 10.1038/s41598-021-04594-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/15/2021] [Indexed: 02/08/2023] Open
Abstract
The burden of diabetes mellitus (DM) and associated complications is increasing worldwide, affecting many organ functionalities including submandibular glands (SMG). The present study aims to investigate the potential ameliorative effect of glycyrrhizic acid (GA) on diabetes-induced SMG damage. Experimental evaluation of GA treatment was conducted on a rat model of type I diabetes. Animals were assigned to three groups; control, diabetic and GA treated diabetic groups. After 8 weeks, the SMG was processed for assessment of oxidative stress markers, autophagy related proteins; LC3, Beclin-1 and P62, vascular regulator ET-1, aquaporins (AQPs 1.4 and 5), SIRT1 protein expressions in addition to LC3 and AQP5 mRNA expressions. Also, parenchymal structures of the SMG were examined. GA alleviated the diabetes-induced SMG damage via restoring the SMG levels of oxidative stress markers and ET-1 almost near to the normal levels most probably via regulation of SIRT1, AQPs and accordingly LC-3, P62 and Beclin-1levels. GA could be a promising candidate for the treatment of diabetes-induced SMG damage via regulating oxidative stress, autophagy and angiogenesis.
Collapse
Affiliation(s)
- Saad Mohamed Asseri
- Department of Clinical Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh, Saudi Arabia
| | - Nehal M Elsherbiny
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, 11597, AlMaarefa University, Riyadh, P.O. Box 71666, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Iman O Sherif
- Emergency Hospital, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Alsamman M Alsamman
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Agricultural Genetic Engineering Research Institute, PO Box 12619, Giza, Egypt
| | - Nadia M Maysarah
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Amira M Elsherbini
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
5
|
Yamamoto M, Nagasawa Y, Fujimori K. Glycyrrhizic acid suppresses early stage of adipogenesis through repression of MEK/ERK-mediated C/EBPβ and C/EBPδ expression in 3T3-L1 cells. Chem Biol Interact 2021; 346:109595. [PMID: 34302803 DOI: 10.1016/j.cbi.2021.109595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Glycyrrhizic acid (GA), a major constituent of the root of licorice (Glycyrrhiza glabra), and has various biological activities, including anti-obesity property. However, the molecular mechanism of anti-adipogenic effect of GA is still unclear. In this study, we investigated the anti-adipogenic effects of GA in mouse adipocytic 3T3-L1 cells and elucidated its underlying molecular mechanism. GA decreased the intracellular triglyceride level. The expression levels of the adipogenic and lipogenic genes were lowered by treatment with GA in a concertation-dependent manner. In contrast, GA did not affect the lipolytic gene expression and the released glycerol level. GA suppressed the early stage of adipogenesis when it was added for 0-3 h after initiation of adipogenesis. Moreover, GA reduced the mRNA levels of CCAAT/enhancer binding protein (C/EBP) β and C/EBPδ, both of which activate the early stage of adipogenesis. Furthermore, GA decreased phosphorylation of extracellular signal-regulated kinase [ERK: p44/42 mitogen-activated protein kinase (MAPK)] in the early stage of adipogenesis. In addition, a MAPK kinase (MEK) inhibitor, PD98059 reduced the C/EBPβ and C/EBPδ gene expression. These results indicate that GA suppressed the early stage of adipogenesis through repressing the MEK/ERK-mediated C/EBPβ and C/EBPδ expression in 3T3-L1 cells. Thus, GA has an anti-adipogenic ability and a possible agent for treatment of obesity.
Collapse
Affiliation(s)
- Masayuki Yamamoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yasuna Nagasawa
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Ko Fujimori
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| |
Collapse
|
6
|
Chen K, Yang R, Shen FQ, Zhu HL. Advances in Pharmacological Activities and Mechanisms of Glycyrrhizic Acid. Curr Med Chem 2021; 27:6219-6243. [PMID: 31612817 DOI: 10.2174/0929867325666191011115407] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 09/09/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022]
Abstract
Licorice (Glycyrrhiza glabra L.) is widely regarded as an important medicinal plant and has been used for centuries in traditional medicine because of its therapeutic properties. Studies have shown that metabolites isolated from licorice have many pharmacological activities, such as antiinflammatory, anti-viral, participation in immune regulation, anti-tumor and other activities. This article gives an overview of the pharmacological activities and mechanisms of licorice metabolites and the adverse reactions that need attention. This review helps to further investigate the possibility of licorice as a potential drug for various diseases. It is hoped that this review can provide a relevant theoretical basis for relevant scholars' research and their own learning.
Collapse
Affiliation(s)
- Kun Chen
- The Joint Research Center of Guangzhou University and Keele Univeristy for Gene Interference and
Application, School of Life Science, Guangzhou University, Guangzhou 510006, People’s Republic of China,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University,
Nanjing 210023, People’s Republic of China
| | - Rong Yang
- The Joint Research Center of Guangzhou University and Keele Univeristy for Gene Interference and
Application, School of Life Science, Guangzhou University, Guangzhou 510006, People’s Republic of China,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University,
Nanjing 210023, People’s Republic of China
| | - Fa-Qian Shen
- The Joint Research Center of Guangzhou University and Keele Univeristy for Gene Interference and
Application, School of Life Science, Guangzhou University, Guangzhou 510006, People’s Republic of China,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University,
Nanjing 210023, People’s Republic of China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University,
Nanjing 210023, People’s Republic of China
| |
Collapse
|
7
|
Li Y, Liu T, Yan C, Xie R, Guo Z, Wang S, Zhang Y, Li Z, Wang B, Cao H. Diammonium Glycyrrhizinate Protects against Nonalcoholic Fatty Liver Disease in Mice through Modulation of Gut Microbiota and Restoration of Intestinal Barrier. Mol Pharm 2018; 15:3860-3870. [PMID: 30036479 DOI: 10.1021/acs.molpharmaceut.8b00347] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), as a common chronic liver disorder, is prevalent in the world. Recent evidence demonstrates that the "gut-liver axis" is related well to the progression of NAFLD, which regards gut microbiota and the intestinal barrier as two critical factors correlated with NAFLD. Diammonium glycyrrhizinate (DG), a compound of the natural bioactive pentacyclic triterpenoid glycoside, is the main component of licorice root extracts. The anti-inflammatory and liver protection effects of DG have already been reported, but to date, the mechanism has not been fully elucidated. In this research, we observed that DG reduced body weight, liver steatosis, as well as hepatic inflammation in NAFLD model mice induced by a high-fat diet. Illumina sequencing of the 16S rRNA revealed that DG intervention notably altered the composition of the gut microbiota in NAFLD mice. The richness of gut microbiota was significantly increased by DG. Specifically, DG reduced the Firmicutes-to- Bacteroidetes ratio and the endotoxin-producing bacteria such as Desulfovibrio and elevated the abundance of probiotics such as Proteobacteria and Lactobacillus. DG could augment the levels of short-chain fatty acid (SCFA)-producing bacteria such as Ruminococcaceae and Lachnospiraceae and promote SCFA production. In addition, DG supplementation dramatically alleviated the intestinal low-grade inflammation. Meanwhile, DG improved the expression of tight junction proteins, the goblet cell number, and mucin secretion and sequentially enhanced the function of intestinal barrier. Collectively, the prevention of NAFLD by DG might be mediated by modulating gut microbiota and restoring the intestinal barrier.
Collapse
|
8
|
Abo El-Magd NF, El-Mesery M, El-Karef A, El-Shishtawy MM. Glycyrrhizin ameliorates high fat diet-induced obesity in rats by activating NrF2 pathway. Life Sci 2018; 193:159-170. [PMID: 29129772 DOI: 10.1016/j.lfs.2017.11.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 12/27/2022]
Abstract
AIM Obesity based on insulin resistance is a state of chronic oxidative stress and inflammation that are highly regulated through nuclear factor Erythroid 2-related factor 2 (NrF2) pathway. MATERIALS AND METHODS 70 male Wistar rats were randomized into two models. The prophylactic model was 10weeks and rats were grouped into: normal group, GL group (received glycyrrhizin 50mg/kg/day orally along with normal pellet diet), HFD group and HFD+ GL group (received glycyrrhizin along with HFD). The treatment model was 14weeks and rats were grouped into: normal group, HFD group and HFD+GL group (received glycyrrhizin from the week 10). KEY FINDINGS Glycyrrhizin decreased significantly rat weights and insulin resistance, normalized lipid profile and reduced significantly the adipocytes size in adipose tissue and lipid deposition in the liver tissue through histopathologic examination. Furthermore, glycyrrhizin ameliorated obesity-induced oxidative stress which indicated by significant decrease in liver malondialdehyde level (P<0.001) and increase in the total antioxidant capacity (P<0.001). Interestingly, molecular mechanism of glycyrrhizin was explored, that included significant reduction of liver gluconeogenic enzymes mRNA expression (P<0.001), a significant increase of liver insulin receptor, NrF2 and homooxygenase-1 mRNA expressions (P<0.001) and significant increase and nuclear translocation of NrF2 in liver tissue. SIGNIFICANCE Glycyrrhizin ameliorates HFD-induced obesity in rats that may be attributed to its ability to increase insulin receptor expression and to activate NrF2 and subsequent homooxygenase-1 pathway. Thus, this work represents a safe natural compound (glycyrrhizin) that has a great role either as prophylaxis or treatment for insulin resistance related to obesity.
Collapse
Affiliation(s)
- Nada F Abo El-Magd
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Amro El-Karef
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mamdouh M El-Shishtawy
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
9
|
Cheng HS, Yaw HP, Ton SH, Choy SM, Kong JMXF, Abdul Kadir K. Glycyrrhizic acid prevents high calorie diet−induced metabolic aberrations despite the suppression of peroxisome proliferator-activated receptor γ expression. Nutrition 2016; 32:995-1001. [DOI: 10.1016/j.nut.2016.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/25/2016] [Accepted: 02/02/2016] [Indexed: 01/11/2023]
|
10
|
Sil R, Ray D, Chakraborti AS. Glycyrrhizin ameliorates metabolic syndrome-induced liver damage in experimental rat model. Mol Cell Biochem 2015; 409:177-89. [PMID: 26400710 DOI: 10.1007/s11010-015-2523-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/06/2015] [Indexed: 12/29/2022]
Abstract
Glycyrrhizin, a major constituent of licorice (Glycyrrhiza glabra) root, has been reported to ameliorate insulin resistance, hyperglycemia, dyslipidemia, and obesity in rats with metabolic syndrome. Liver dysfunction is associated with this syndrome. The objective of this study is to investigate the effect of glycyrrhizin treatment on metabolic syndrome-induced liver damage. After induction of metabolic syndrome in rats by high fructose (60%) diet for 6 weeks, the rats were treated with glycyrrhizin (50 mg/kg body weight, single intra-peritoneal injection). After 2 weeks of treatment, rats were sacrificed to collect blood samples and liver tissues. Compared to normal, elevated activities of serum alanine transaminase, alkaline phosphatase and aspartate transaminase, increased levels of liver advanced glycation end products, reactive oxygen species, lipid peroxidation, protein carbonyl, protein kinase Cα, NADPH oxidase-2, and decreased glutathione cycle components established liver damage and oxidative stress in fructose-fed rats. Activation of nuclear factor κB, mitogen-activated protein kinase pathways as well as signals from mitochondria were found to be involved in liver cell apoptosis. Increased levels of cyclooxygenase-2, tumor necrosis factor, and interleukin-12 proteins suggested hepatic inflammation. Metabolic syndrome caused hepatic DNA damage and poly-ADP ribose polymerase cleavage. Fluorescence-activated cell sorting using annexin V/propidium iodide staining confirmed the apoptotic hepatic cell death. Histology of liver tissue also supported the experimental findings. Treatment with glycyrrhizin reduced oxidative stress, hepatic inflammation, and apoptotic cell death in fructose-fed rats. The results suggest that glycyrrhizin possesses therapeutic potential against hepatocellular damage in metabolic syndrome.
Collapse
Affiliation(s)
- Rajarshi Sil
- Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, 92 Acharyya Prafulla Chandra Road, Kolkata, West Bengal, 700009, India
| | - Doel Ray
- Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, 92 Acharyya Prafulla Chandra Road, Kolkata, West Bengal, 700009, India.,School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abhay Sankar Chakraborti
- Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, 92 Acharyya Prafulla Chandra Road, Kolkata, West Bengal, 700009, India.
| |
Collapse
|