1
|
Dontamsetti KD, Pedrosa‐Suarez LC, Aktar R, Peiris M. Sensing of luminal contents and downstream modulation of GI function. JGH Open 2024; 8:e13083. [PMID: 38779131 PMCID: PMC11109814 DOI: 10.1002/jgh3.13083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
The luminal environment is rich in macronutrients coming from our diet and resident microbial populations including their metabolites. Together, they have the capacity to modulate unique cell surface receptors, known as G-protein coupled receptors (GPCRs). Along the entire length of the gut epithelium, enteroendocrine cells express GPCRs to interact with luminal contents, such as GPR93 and the calcium sensing receptor to sense proteins, FFA2 and GPR84 to sense fatty acids, and SGLT1 and T1R to sense carbohydrates. Nutrient-receptor interaction causes the release of hormonal stores such as glucagon-like peptide 1, peptide YY, and cholecystokinin, which further regulate gut function. Existing data show the role of luminal components and microbial fermentation products on gut function. However, there is a lack of understanding in the mechanistic interactions between diet-derived luminal components and microbial products and nutrient-sensing receptors and downstream gastrointestinal modulation. This review summarizes current knowledge on various luminal components and describes in detail the range of nutrients and metabolites and their interaction with nutrient receptors in the gut epithelium and the emerging impact on immune cells.
Collapse
Affiliation(s)
- Kiran Devi Dontamsetti
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Laura Camila Pedrosa‐Suarez
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Rubina Aktar
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Madusha Peiris
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| |
Collapse
|
2
|
Spathakis M, Dovrolis N, Filidou E, Kandilogiannakis L, Tarapatzi G, Valatas V, Drygiannakis I, Paspaliaris V, Arvanitidis K, Manolopoulos VG, Kolios G, Vradelis S. Exploring Microbial Metabolite Receptors in Inflammatory Bowel Disease: An In Silico Analysis of Their Potential Role in Inflammation and Fibrosis. Pharmaceuticals (Basel) 2024; 17:492. [PMID: 38675452 PMCID: PMC11054721 DOI: 10.3390/ph17040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolites produced by dysbiotic intestinal microbiota can influence disease pathophysiology by participating in ligand-receptor interactions. Our aim was to investigate the differential expression of metabolite receptor (MR) genes between inflammatory bowel disease (IBD), healthy individuals (HIs), and disease controls in order to identify possible interactions with inflammatory and fibrotic pathways in the intestine. RNA-sequencing datasets containing 643 Crohn's disease (CD) patients, 467 ulcerative colitis (UC) patients and 295 HIs, and 4 Campylobacter jejuni-infected individuals were retrieved from the Sequence Read Archive, and differential expression was performed using the RaNA-seq online platform. The identified differentially expressed MR genes were used for correlation analysis with up- and downregulated genes in IBD, as well as functional enrichment analysis using a R based pipeline. Overall, 15 MR genes exhibited dysregulated expression in IBD. In inflamed CD, the hydroxycarboxylic acid receptors 2 and 3 (HCAR2, HCAR3) were upregulated and were associated with the recruitment of innate immune cells, while, in the non-inflamed CD ileum, the cannabinoid receptor 1 (CNR1) and the sphingosine-1-phospate receptor 4 (S1PR4) were downregulated and were involved in the regulation of B-cell activation. In inflamed UC, the upregulated receptors HCAR2 and HCAR3 were more closely associated with the process of TH-17 cell differentiation, while the pregnane X receptor (NR1I2) and the transient receptor potential vanilloid 1 (TRPV1) were downregulated and were involved in epithelial barrier maintenance. Our results elucidate the landscape of metabolite receptor expression in IBD, highlighting associations with disease-related functions that could guide the development of new targeted therapies.
Collapse
Affiliation(s)
- Michail Spathakis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (E.F.); (L.K.); (G.T.); (V.V.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Nikolas Dovrolis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (E.F.); (L.K.); (G.T.); (V.V.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Eirini Filidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (E.F.); (L.K.); (G.T.); (V.V.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Leonidas Kandilogiannakis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (E.F.); (L.K.); (G.T.); (V.V.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Gesthimani Tarapatzi
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (E.F.); (L.K.); (G.T.); (V.V.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Vassilis Valatas
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (E.F.); (L.K.); (G.T.); (V.V.); (K.A.); (V.G.M.); (G.K.)
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Ioannis Drygiannakis
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, 71003 Heraklion, Greece;
| | | | - Konstantinos Arvanitidis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (E.F.); (L.K.); (G.T.); (V.V.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Vangelis G. Manolopoulos
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (E.F.); (L.K.); (G.T.); (V.V.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (E.F.); (L.K.); (G.T.); (V.V.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Stergios Vradelis
- Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| |
Collapse
|
3
|
Hu C, Liao S, Lv L, Li C, Mei Z. Intestinal Immune Imbalance is an Alarm in the Development of IBD. Mediators Inflamm 2023; 2023:1073984. [PMID: 37554552 PMCID: PMC10406561 DOI: 10.1155/2023/1073984] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
Immune regulation plays a crucial role in human health and disease. Inflammatory bowel disease (IBD) is a chronic relapse bowel disease with an increasing incidence worldwide. Clinical treatments for IBD are limited and inefficient. However, the pathogenesis of immune-mediated IBD remains unclear. This review describes the activation of innate and adaptive immune functions by intestinal immune cells to regulate intestinal immune balance and maintain intestinal mucosal integrity. Changes in susceptible genes, autophagy, energy metabolism, and other factors interact in a complex manner with the immune system, eventually leading to intestinal immune imbalance and the onset of IBD. These events indicate that intestinal immune imbalance is an alarm for IBD development, further opening new possibilities for the unprecedented development of immunotherapy for IBD.
Collapse
Affiliation(s)
- Chunli Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chuanfei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
4
|
Higashiyama M, Miura S, Hokari R. Modulation by luminal factors on the functions and migration of intestinal innate immunity. Front Immunol 2023; 14:1113467. [PMID: 36860849 PMCID: PMC9968923 DOI: 10.3389/fimmu.2023.1113467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Luminal antigens, nutrients, metabolites from commensal bacteria, bile acids, or neuropeptides influence the function and trafficking of immune cells in the intestine. Among the immune cells in the gut, innate lymphoid cells, including macrophages, neutrophils, dendritic cells, mast cells, and innate lymphoid cells, play an important role for the maintenance of intestinal homeostasis through a rapid immune response to luminal pathogens. These innate cells are influenced by several luminal factors, possibly leading to dysregulated gut immunity and intestinal disorders such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and intestinal allergy. Luminal factors are sensed by distinct neuro-immune cell units, which also have a strong impact on immunoregulation of the gut. Immune cell trafficking from the blood stream through the lymphatic organ to lymphatics, an essential function for immune responses, is also modulated by luminal factors. This mini-review examines knowledge of luminal and neural factors that regulate and modulate response and migration of leukocytes including innate immune cells, some of which are clinically associated with pathological intestinal inflammation.
Collapse
Affiliation(s)
- Masaaki Higashiyama
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan,*Correspondence: Masaaki Higashiyama,
| | - Soichiro Miura
- International University of Health and Welfare, Tokyo, Japan
| | - Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
5
|
Lymperopoulos A, Suster MS, Borges JI. Short-Chain Fatty Acid Receptors and Cardiovascular Function. Int J Mol Sci 2022; 23:3303. [PMID: 35328722 PMCID: PMC8952772 DOI: 10.3390/ijms23063303] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Increasing experimental and clinical evidence points toward a very important role for the gut microbiome and its associated metabolism in human health and disease, including in cardiovascular disorders. Free fatty acids (FFAs) are metabolically produced and utilized as energy substrates during almost every biological process in the human body. Contrary to long- and medium-chain FFAs, which are mainly synthesized from dietary triglycerides, short-chain FFAs (SCFAs) derive from the gut microbiota-mediated fermentation of indigestible dietary fiber. Originally thought to serve only as energy sources, FFAs are now known to act as ligands for a specific group of cell surface receptors called FFA receptors (FFARs), thereby inducing intracellular signaling to exert a variety of cellular and tissue effects. All FFARs are G protein-coupled receptors (GPCRs) that play integral roles in the regulation of metabolism, immunity, inflammation, hormone/neurotransmitter secretion, etc. Four different FFAR types are known to date, with FFAR1 (formerly known as GPR40) and FFAR4 (formerly known as GPR120) mediating long- and medium-chain FFA actions, while FFAR3 (formerly GPR41) and FFAR2 (formerly GPR43) are essentially the SCFA receptors (SCFARs), responding to all SCFAs, including acetic acid, propionic acid, and butyric acid. As with various other organ systems/tissues, the important roles the SCFARs (FFAR2 and FFAR3) play in physiology and in various disorders of the cardiovascular system have been revealed over the last fifteen years. In this review, we discuss the cardiovascular implications of some key (patho)physiological functions of SCFAR signaling pathways, particularly those regulating the neurohormonal control of circulation and adipose tissue homeostasis. Wherever appropriate, we also highlight the potential of these receptors as therapeutic targets for cardiovascular disorders.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA; (M.S.S.); (J.I.B.)
| | | | | |
Collapse
|
6
|
Zhang H, Zhao Y, Wei F, Han M, Chen J, Peng S, Du Y. Prevalence and Risk Factors for Fall among Rural Elderly: A County-Based Cross-Sectional Survey. Int J Clin Pract 2022; 2022:8042915. [PMID: 35832801 PMCID: PMC9252676 DOI: 10.1155/2022/8042915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/20/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
AIM The aim of the study was to provide evidence for the prevention and reduction of falls in the elderly living in rural areas by analyzing epidemiological data of falls among the rural older people (>65 years old) and identifying the risk and protective factors. METHODS This study analyzed the sociodemographic characteristics, living environment, lifestyle, chronic disease condition, mental health, activities of daily living (ADL), and detailed information of falls of 3752 rural elderly. Rank tests, chi-square tests, and binary logistic regression were used for data analysis. RESULTS The prevalence of falls was 30.0%, and the 75-84-years age group had the highest fall rate (18.8%). According to the binary logistic regression analysis, six variables, including roughage intake frequency, age, gender, cane use, floor tiles, and IADL, were involved in the fall patterns. Low roughage intake (OR = 2.48, 95% CI 1.24-4.97), female gender (OR = 2.12, 95% CI 1.48-3.05), the use of a cane (OR = 2.11, 95% CI 1.08-4.10), and medium IADL (OR = 2.02, 95% CI 1.89-2.32) were the top four risk factors. CONCLUSION The fall in the rural elderly was mainly due to the poor living and working conditions. Routine fall assessment could address several preventable risk factors to reduce the prevalence and mitigate the harm of falls.
Collapse
Affiliation(s)
- Hongping Zhang
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yinshaung Zhao
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Feng Wei
- Centers for Disease Prevention & Control of Huangpi District of Wuhan, Wuhan 430300, China
| | - Mo Han
- Centers for Disease Prevention & Control of Huangpi District of Wuhan, Wuhan 430300, China
| | - Jianquan Chen
- Department of Disease Control, Health and Family Planning Commission of Huangpi District of Wuhan, Wuhan 430300, China
| | - Songxu Peng
- Department of Maternal and Child Health, Xiangya School of Public Health, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Yukai Du
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| |
Collapse
|
7
|
Free Fatty Acid Receptors 2 and 3 as Microbial Metabolite Sensors to Shape Host Health: Pharmacophysiological View. Biomedicines 2020; 8:biomedicines8060154. [PMID: 32521775 PMCID: PMC7344995 DOI: 10.3390/biomedicines8060154] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
The role of the gut microbiome in human health is becoming apparent. The major functional impact of the gut microbiome is transmitted through the microbial metabolites that are produced in the gut and interact with host cells either in the local gut environment or are absorbed into circulation to impact distant cells/organs. Short-chain fatty acids (SCFAs) are the major microbial metabolites that are produced in the gut through the fermentation of non-digestible fibers. SCFAs are known to function through various mechanisms, however, their signaling through free fatty acid receptors 2 and 3 (FFAR2/3; type of G-coupled protein receptors) is a new therapeutic approach. FFAR2/3 are widely expressed in diverse cell types in human and mice, and function as sensors of SCFAs to change several physiological and cellular functions. FFAR2/3 modulate neurological signaling, energy metabolism, intestinal cellular homeostasis, immune response, and hormone synthesis. FFAR2/3 function through Gi and/or Gq signaling, that is mediated through specific structural features of SCFAs-FFAR2/3 bindings and modulating specific signaling pathway. In this review, we discuss the wide-spread expression and structural homologies between human and mice FFAR2/3, and their role in different human health conditions. This information can unlock opportunities to weigh the potential of FFAR2/3 as a drug target to prevent human diseases.
Collapse
|
8
|
Bartoszek A, Moo EV, Binienda A, Fabisiak A, Krajewska JB, Mosińska P, Niewinna K, Tarasiuk A, Martemyanov K, Salaga M, Fichna J. Free Fatty Acid Receptors as new potential therapeutic target in inflammatory bowel diseases. Pharmacol Res 2019; 152:104604. [PMID: 31846762 DOI: 10.1016/j.phrs.2019.104604] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/19/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
Family of Free Fatty Acid Receptors (FFARs), specific G protein-coupled receptors comprises of four members: FFAR1-4, where each responds to different chain length of fatty acids (FAs). Over the years, FFARs have become attractive pharmacological targets in the treatment of type 2 diabetes, metabolic syndrome, cardiovascular diseases and asthma; recent studies also point to their role in inflammation. It is now well-established that activation of FFAR1 and FFAR4 by long and medium chain FAs may lead to reduction of inflammatory state; FFAR2 and FFAR3 are activated by short chain FAs, but only FFAR2 was shown to alleviate inflammation, mostly by neutrophil inhibition. All FFARs have thus been proposed as targets in inflammatory bowel diseases (IBD). Here we discuss current knowledge and future directions in FFAR research related to IBD.
Collapse
Affiliation(s)
- Adrian Bartoszek
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Ee Von Moo
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Agata Binienda
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Adam Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland; Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Julia B Krajewska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Paula Mosińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Karolina Niewinna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Kirill Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Maciej Salaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
9
|
Song X, Li J, Wang Y, Zhou C, Zhang Z, Shen M, Xiang P, Zhang X, Zhao H, Yu L, Zuo L, Hu J. Clematichinenoside AR ameliorated spontaneous colitis in Il-10 -/- mice associated with improving the intestinal barrier function and abnormal immune responses. Life Sci 2019; 239:117021. [PMID: 31678552 DOI: 10.1016/j.lfs.2019.117021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Clematichinenoside AR (AR) is a saponin extracted for traditional Chinese medicine with the effects of improving the expression of tight junction (TJ) proteins and mediating anti-inflammatory activities. However, its effect on Crohn's disease (CD) is still unknown. We aimed to investigate the impact of AR on CD-like colitis and determine the mechanism underlying its effects. METHODS Interleukin-10 gene knockout (Il-10-/-) mice (male, fifteen weeks old) with spontaneous colitis were allocated to the positive control and AR-treated (32 mg/kg AR administered every other day by gavage for 4 weeks) groups. Wild-type (WT) mice (male, fifteen weeks old) composed the negative control group. The effects of AR on intestinal barrier function and structure and T cell responses as well as the potential mechanisms underlying these effects were investigated. RESULTS AR treatment significantly improved spontaneous colitis in Il-10-/- mice as demonstrated by reductions in the inflammatory score, disease activity index (DAI) and levels of inflammatory factors. The effects of AR on colitis in Il-10-/- mice were related to protecting intestinal barrier function and maintaining immune system homeostasis (regulatory T cell (Treg)/T helper 17 (Th17) cell balance). The anticolitis effect of AR may partly act by downregulating PI3K/Akt signaling. CONCLUSIONS AR may have therapeutic potential for treating CD in humans.
Collapse
Affiliation(s)
- Xue Song
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Jing Li
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China; Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yan Wang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China; Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Changmin Zhou
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China; Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Zhichao Zhang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China; Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Mengdi Shen
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China; Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Ping Xiang
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaofeng Zhang
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Hao Zhao
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Liang Yu
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Lugen Zuo
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Jianguo Hu
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China; Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.
| |
Collapse
|
10
|
Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, Harmsen HJM, Faber KN, Hermoso MA. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front Immunol 2019; 10:277. [PMID: 30915065 PMCID: PMC6421268 DOI: 10.3389/fimmu.2019.00277] [Citation(s) in RCA: 2107] [Impact Index Per Article: 351.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
Ulcerative colitis (UC) and Crohn's disease (CD), collectively known as Inflammatory Bowel Diseases (IBD), are caused by a complex interplay between genetic, immunologic, microbial and environmental factors. Dysbiosis of the gut microbiome is increasingly considered to be causatively related to IBD and is strongly affected by components of a Western life style. Bacteria that ferment fibers and produce short chain fatty acids (SCFAs) are typically reduced in mucosa and feces of patients with IBD, as compared to healthy individuals. SCFAs, such as acetate, propionate and butyrate, are important metabolites in maintaining intestinal homeostasis. Several studies have indeed shown that fecal SCFAs levels are reduced in active IBD. SCFAs are an important fuel for intestinal epithelial cells and are known to strengthen the gut barrier function. Recent findings, however, show that SCFAs, and in particular butyrate, also have important immunomodulatory functions. Absorption of SCFAs is facilitated by substrate transporters like MCT1 and SMCT1 to promote cellular metabolism. Moreover, SCFAs may signal through cell surface G-protein coupled receptors (GPCRs), like GPR41, GPR43, and GPR109A, to activate signaling cascades that control immune functions. Transgenic mouse models support the key role of these GPCRs in controlling intestinal inflammation. Here, we present an overview of microbial SCFAs production and their effects on the intestinal mucosa with specific emphasis on their relevance for IBD. Moreover, we discuss the therapeutic potential of SCFAs for IBD, either applied directly or by stimulating SCFAs-producing bacteria through pre- or probiotic approaches.
Collapse
Affiliation(s)
- Daniela Parada Venegas
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Marjorie K De la Fuente
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Glauben Landskron
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María Julieta González
- Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Rodrigo Quera
- Inflammatory Bowel Diseases Program, Department of Gastroenterology, Clínica Las Condes, Santiago, Chile
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marcela A Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
11
|
Shen JJ, Guo B. Novel Approaches for Pouchitis and Colitis With or Without Diversion. POUCHITIS AND ILEAL POUCH DISORDERS 2019:529-535. [DOI: 10.1016/b978-0-12-809402-0.00043-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Iván J, Major E, Sipos A, Kovács K, Horváth D, Tamás I, Bay P, Dombrádi V, Lontay B. The Short-Chain Fatty Acid Propionate Inhibits Adipogenic Differentiation of Human Chorion-Derived Mesenchymal Stem Cells Through the Free Fatty Acid Receptor 2. Stem Cells Dev 2017; 26:1724-1733. [PMID: 28992793 PMCID: PMC5706617 DOI: 10.1089/scd.2017.0035] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Free fatty acid receptor 2 (FFAR2, also known as GPR43) is a G-protein-coupled receptor activated by short-chain fatty acids that are produced by gut microbiota through fermentation of nondigestible carbohydrates. FFAR2 functions as a metabolic sensor and is expressed in metabolically active tissues, such as adipose tissue. Earlier studies proved the connection between FFAR2 and adipocyte differentiation in mice. The aim of this study was to investigate the implication of FFAR2 receptor in adipogenesis in human chorion-derived mesenchymal stem cells (cMSCs). The short-chain fatty acid, propionate, and phenylacetamide a selective FFAR2 agonist resulted in a marked suppression of lipid droplet accumulation during the adipogenic differentiation of cMSCs. Western blot studies revealed that FFAR2 was detectable at any time point of the differentiation period. The direct involvement of FFAR2 in the differentiation into adipocytes was proven by the downregulation of its gene expression in cMSCs by lentiviral messenger RNA (mRNA) silencing transduction particles. Our results showed that a significant suppression in lipid accumulation upon FFAR2 agonist treatments was elicited by FFAR2-silencing. Based on these results we suggest that propionate inhibits the formation of adipocytes from MSCs and acts on adipogenesis predominantly via FFAR2.
Collapse
Affiliation(s)
- Judit Iván
- 1 Department of Medical Chemistry, Faculty of Medicine, University of Debrecen , Debrecen, Hungary .,2 MTA-DE Cell Biology and Signaling Research Group , Debrecen, Hungary
| | - Evelin Major
- 1 Department of Medical Chemistry, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
| | - Adrienn Sipos
- 1 Department of Medical Chemistry, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
| | - Katalin Kovács
- 1 Department of Medical Chemistry, Faculty of Medicine, University of Debrecen , Debrecen, Hungary .,2 MTA-DE Cell Biology and Signaling Research Group , Debrecen, Hungary
| | - Dániel Horváth
- 1 Department of Medical Chemistry, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
| | - István Tamás
- 1 Department of Medical Chemistry, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
| | - Péter Bay
- 1 Department of Medical Chemistry, Faculty of Medicine, University of Debrecen , Debrecen, Hungary .,3 MTA-DE Lendület Laboratory of Cellular Metabolism , Debrecen, Hungary .,4 Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
| | - Viktor Dombrádi
- 1 Department of Medical Chemistry, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
| | - Beáta Lontay
- 1 Department of Medical Chemistry, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
| |
Collapse
|
13
|
Fatty acid and mineral receptors as drug targets for gastrointestinal disorders. Future Med Chem 2017; 9:315-334. [DOI: 10.4155/fmc-2016-0205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nutrient-sensing receptors, including fatty acid receptors (FFA1–FFA4), Ca2+-sensing receptors and Zn2+-sensing receptors, are involved in several biological processes. These receptors are abundantly expressed in the GI tract, where they have been shown to play crucial roles in regulating GI function. This review provides an overview of the GI functions of fatty acid and mineral receptors, including the regulation of gastric and enteroendocrine functions, GI motility, ion transport and cell growth. Recently, several lines of evidence have implicated these receptors as promising therapeutic targets for the treatment of GI disorders, for example, inflammatory bowel disease, colorectal cancer, metabolic syndrome and diarrheal diseases. A future perspective on drug discovery research targeting these receptors is discussed.
Collapse
|
14
|
Nadeem A, Ahmad SF, Al-Harbi NO, El-Sherbeeny AM, Al-Harbi MM, Almukhlafi TS. GPR43 activation enhances psoriasis-like inflammation through epidermal upregulation of IL-6 and dual oxidase 2 signaling in a murine model. Cell Signal 2017; 33:59-68. [PMID: 28212864 DOI: 10.1016/j.cellsig.2017.02.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
Abstract
The gut is densely inhabited by commensal bacteria, which metabolize dietary fibers/undigested carbohydrates and produce short-chain fatty acids such as acetate. GPR43 is one of the receptors to sense short-chain fatty acids, and expressed in various immune and non-immune cells. Acetate/GPR43 signaling has been shown to affect various inflammatory diseases through Th17 responses and NADPH oxidase (NOX)-derived reactive oxygen species (ROS) generation. However, no study has previously explored the effects of GPR43 activation during psoriasis-like inflammation. Therefore, this study investigated the effect of acetate/phenylacetamide (GPR43 agonists) on imiquimod induced skin inflammation in mice. Mice were administered phenylacetamide/acetate followed by assessment of skin inflammation, NOXs (NOX-2, NOX-4, dual oxidases), and Th17 related signaling. Our study showed induction of epidermal GPR43 after imiquimod treatment, i.e. psoriasis-like inflammation. Acetate administration in psoriatic mice led to further increase in skin inflammation (ear thickness/myeloperoxidase activity) with concurrent increase in Th17 immune responses and epidermal dual oxidase-2 signaling. Further, topical application of GPR43 agonist, phenylacetamide led to enhanced ear thickness with concomitant epidermal IL-6 signaling as well as dual oxidase-2 upregulation which may be responsible for increased psoriasis-like inflammation. Taken together, dual oxidase-2 and IL-6 play important roles in GPR43-mediated skin inflammation. The current study suggests that GPR43 activation in psoriatic patients may lead to aggravation of psoriatic inflammation.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed M El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Talal S Almukhlafi
- College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|