1
|
Jaiswal S, Shinde P, Tale V. Recent Nanotechnological Trends in the Management of Microbial Keratitis. J Ophthalmic Vis Res 2024; 19:476-487. [PMID: 39917459 PMCID: PMC11795005 DOI: 10.18502/jovr.v19i4.14498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 05/24/2024] [Indexed: 02/09/2025] Open
Abstract
Microbial keratitis (MK) is a sight-threatening ocular disease that needs rapid diagnosis and treatment to prevent more serious outcomes. The broad-spectrum topical antimicrobial treatment is currently the main pharmacological approach for MK management, yet its efficacy is increasingly challenged by evolving antimicrobial resistance, including multidrug resistance. Also, the ocular surface presents numerous challenges for standard topical drug delivery. The failure and ineffectiveness of current therapies have necessitated the development of novel therapeutic strategies to manage MK. With advances in nanotechnology in the biomedical field, various nanomaterials can be employed to control MK. The primary determinants of nanoparticles' vast range of applications are their size, surface properties, and chemical makeup, which also happen to be the same elements that give rise to their poisonous and dangerous effects. In this study, we provide a perspective on the contact lens-associated corneal illnesses such as MK and explore how nanotechnology might help address this significant clinical issue. In addition, safety and toxicological concerns about the increasingly widespread use of contact lenses are also discussed.
Collapse
Affiliation(s)
- Shraddha Jaiswal
- Rajiv Gandhi Institute of IT And Biotechnology, Bharati Vidyapeeth Deemed to be University, Pune, India
| | - Prabhavati Shinde
- Rajiv Gandhi Institute of IT And Biotechnology, Bharati Vidyapeeth Deemed to be University, Pune, India
| | - Vidya Tale
- Rajiv Gandhi Institute of IT And Biotechnology, Bharati Vidyapeeth Deemed to be University, Pune, India
| |
Collapse
|
2
|
Hernández-Martínez D, Castro Pot E, Hernández Olmos P, Guzmán Hernández EA, Cobos DS, Villa Ramírez S, Villamar Duque TE, Durán Díaz Á, Omaña-Molina M. Acanthamoeba castellanii trophozoites that survive multipurpose solutions are able to adhere to cosmetic contact lenses, increasing the risk of infection. Heliyon 2023; 9:e19599. [PMID: 37809484 PMCID: PMC10558846 DOI: 10.1016/j.heliyon.2023.e19599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Amoebae of the genus Acanthamoeba are etiological agents of amoebic keratitis, for which up to now there is no treatment of choice and one of its main risk factors is the use of contact lenses, including cosmetic contact lenses. Recently there has been an increase in amoebic keratitis cases due to the use of cosmetic contact lenses. Therefore, having a solution for the care of lenses with an efficient disinfectant effect that prevents the adhesion of trophozoites to lenses becomes essential. This study was carried out to determine the effect of 8 multipurpose contact lenses care solutions on Acanthamoeba castellanii trophozoites viability, and the efficiency of two of them to prevent the trophozoites adherence onto two cosmetic contact lenses (Acuvue 2, approved by the US Food and Drug Administration, and Magic Eye CCL, not approved). After 3 h of interaction, only AO Sept Plus, OPTI FREE Replenish, Renu Plus, Bio True and Multiplus significantly reduced the number of viable trophozoites with respect to the control; at 6 h Renu Plus, and at 12 h Conta Soft Plus and Multiplus, maintained the inhibitory effect. Only Opti Free Pure Moist did not significantly reduce the number of viable trophozoites. Multiplus and Opti Free Pure Moist (selected for their greater and lesser antiamibic effect) significantly reduced trophozoite adherence to both lenses; however, Opti Free Pure Moist was more efficient, despite the fact that A. castellanii adhered similarly to both lenses. Our results show that in all the multipurpose solutions evaluated, hundreds of viable A. castellanii trophozoites remain after several hours of incubation. Therefore, storage of the lenses in their case with MPS maintains the potential risk of amoebic keratitis in, cosmetic contact lenses wearers. Moreover, the use of CCL, not approved by the FDA, can increase the risk factor for AK since its poor manufacture can favor the permanence of amoebae, in addition to being a risk for corneal integrity.
Collapse
Affiliation(s)
- Dolores Hernández-Martínez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Edson Castro Pot
- Carrera de Optometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Perla Hernández Olmos
- Carrera de Optometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | | | - David Segura Cobos
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Sandra Villa Ramírez
- Carrera de Optometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Tomás Ernesto Villamar Duque
- Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Ángel Durán Díaz
- Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Maritza Omaña-Molina
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| |
Collapse
|
3
|
Fernández-Gómez P, Pérez de la Lastra Aranda C, Tosat-Bitrián C, Bueso de Barrio JA, Thompson S, Sot B, Salas G, Somoza Á, Espinosa A, Castellanos M, Palomo V. Nanomedical research and development in Spain: improving the treatment of diseases from the nanoscale. Front Bioeng Biotechnol 2023; 11:1191327. [PMID: 37545884 PMCID: PMC10401050 DOI: 10.3389/fbioe.2023.1191327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/23/2023] [Indexed: 08/08/2023] Open
Abstract
The new and unique possibilities that nanomaterials offer have greatly impacted biomedicine, from the treatment and diagnosis of diseases, to the specific and optimized delivery of therapeutic agents. Technological advances in the synthesis, characterization, standardization, and therapeutic performance of nanoparticles have enabled the approval of several nanomedicines and novel applications. Discoveries continue to rise exponentially in all disease areas, from cancer to neurodegenerative diseases. In Spain, there is a substantial net of researchers involved in the development of nanodiagnostics and nanomedicines. In this review, we summarize the state of the art of nanotechnology, focusing on nanoparticles, for the treatment of diseases in Spain (2017-2022), and give a perspective on the future trends and direction that nanomedicine research is taking.
Collapse
Affiliation(s)
- Paula Fernández-Gómez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Carmen Pérez de la Lastra Aranda
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Carlota Tosat-Bitrián
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Sebastián Thompson
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Begoña Sot
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Unidad de Innovación Biomédica, Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJ UAM), Madrid, Spain
| | - Gorka Salas
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Ana Espinosa
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Madrid, Spain
| | - Milagros Castellanos
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Valle Palomo
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| |
Collapse
|
4
|
Antimicrobial Performance of Innovative Functionalized Surfaces Based on Enamel Coatings: The Effect of Silver-Based Additives on the Antibacterial and Antifungal Activity. Int J Mol Sci 2023; 24:ijms24032364. [PMID: 36768684 PMCID: PMC9916675 DOI: 10.3390/ijms24032364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Frequently touched surfaces (FTS) that are contaminated with pathogens are one of the main sources of nosocomial infections, which commonly include hospital-acquired and healthcare-associated infections (HAIs). HAIs are considered the most common adverse event that has a significant burden on the public's health worldwide currently. The persistence of pathogens on contaminated surfaces and the transmission of multi-drug resistant (MDR) pathogens by way of healthcare surfaces, which are frequently touched by healthcare workers, visitors, and patients increase the risk of acquiring infectious agents in hospital environments. Moreover, not only in hospitals but also in high-traffic public places, FTS play a major role in the spreading of pathogens. Consequently, attention has been devoted to developing novel and alternative methods to tackle this problem. This study planned to produce and characterize innovative functionalized enameled coated surfaces supplemented with 1% AgNO3 and 2% AgNO3. Thus, the antimicrobial properties of the enamels against relevant nosocomial pathogens including the Gram-positive Staphylococcus aureus and the Gram-negative Escherichia coli and the yeast Candida albicans were assessed using the ISO:22196:2011 norm.
Collapse
|
5
|
Shakib P, Kalani H, Tahir Aleem M, Faridnia R, Zebardast Pour M, Moradpour K, Cheraghipour K. New Strategies in the Treatment of Diseases Caused by Acanthamoeba Based on Nanoparticles: A Systematic Review. Curr Rev Clin Exp Pharmacol 2023; 19:68-77. [PMID: 36372923 DOI: 10.2174/2772432818666221111155119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Acanthamoeba is one of the opportunistic parasites with a global prevalence. Currently, due to the side effects and the emergence of drug resistance to this parasite, much research has been performed on the use of nano-drugs to treat Acanthamoeba-caused diseases. Therefore, this systematic review study aims to evaluate new strategies for treating diseases caused by Acanthamoeba based on nanoparticles (NPs). METHODS We designed a systematic review based on the articles published in English between 2000 and 2022. Our search strategy was based on syntax and specific tags for each database, including ScienceDirect, PubMed, Scopus, Ovid, and Cochrane. From the articles, those that had inclusion criteria were selected, and their data were extracted and analyzed. RESULTS In this study, 26 studies were selected. Metallic nanoparticles were mostly used against the Acanthamoeba species (80.7%). 19.2% of the studies used polymeric nanoparticles, and 3.8% used emulsion nanoparticles. Most studies (96.1%) were performed in vitro, and only one study (3.8%) was carried out in vivo. Silver NPs were the most used metallic nanoparticles in the studies. The best effect of the anti-Acanthamoeba compound was observed for green synthesized nanoparticles based on stabilization by plant gums, loaded with citrus fruits flavonoids hesperidin (HDN) and naringin (NRG) with a 100% growth inhibition at a concentration of 50 μg/mL. CONCLUSION This study showed that chlorhexidine and other plant metabolites loaded with silver and gold nanoparticles increase the anti-Acanthambae activity of these nanoparticles. However, green synthesized nanoparticles based on stabilization by plant gums, loaded with citrus fruits flavonoids hesperidin (HDN) and naringin (NRG), showed the best anti-Acanthambae effect. Nevertheless, further studies should be performed to determine their safety for human use.
Collapse
Affiliation(s)
- Pegah Shakib
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamed Kalani
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Roghiyeh Faridnia
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Kobra Moradpour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kourosh Cheraghipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
6
|
Nikam PB, Salunkhe JD, Marathe KR, Alghuthaymi MA, Abd-Elsalam KA, Patil SV. Rhizobium pusense-Mediated Selenium Nanoparticles-Antibiotics Combinations against Acanthamoeba sp. Microorganisms 2022; 10:microorganisms10122502. [PMID: 36557755 PMCID: PMC9785558 DOI: 10.3390/microorganisms10122502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Severe ocular infections by Acanthamoeba sp. lead to keratitis, resulting in irreversible vision loss in immune-compromised individuals. When a protozoal infection spreads to neural tissues, it causes granulomatous encephalitis, which can be fatal. Treatment often takes longer due to the transition of amoeba from trophozoites to cyst stages, cyst being the dormant form of Acanthamoeba. A prolonged use of therapeutic agents, such as ciprofloxacin (Cipro), results in severe side effects; thus, it is critical to improve the therapeutic efficacy of these widely used antibiotics, possibly by limiting the drug-sensitive protozoal-phase transition to cyst formation. Owing to the biomedical potential of selenium nanoparticles (SeNPs), we evaluated the synergistic effects of ciprofloxacin and Rhizobium pusense-biogenic SeNPs combination. SeNPs synthesized using Rhizobium pusense isolated from root nodules were characterized using UV-Visible spectrophotometer, FT-IR, SEM with EDX, particle size analysis, and Zeta potential. The combination was observed to reduce the sub-lethal dose of Cipro, which may help reduce its side effects. The selenium and ciprofloxacin (SeNPs-Cipro) combination reduced the LC50 by 33.43%. The anti-protozoal efficacy of SeNPs-Cipro was found to transduce through decreased protozoal-cyst formations and the inhibition of the galactosidase and protease enzymes of trophozoites. Furthermore, high leakage of sugar, proteins, and amino acids during the SeNPs-Cipro treatment was one primary reason for killing the trophozoites. These experimental results may be helpful in the further pre-clinical evaluation of SeNPs-Cipro to combat protozoal infections. Future studies for combinations of SeNPs with other antibiotics need to be conducted to know the potential of SeNPs against antibiotic resistance in Acanthamoeba.
Collapse
Affiliation(s)
- Pradnya B. Nikam
- Department of Biochemistry, School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon 425001, India
| | - Jitendra D. Salunkhe
- Department of Biochemistry, School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon 425001, India
| | - Kiran R. Marathe
- Department of Biochemistry, School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon 425001, India
| | - Mousa A. Alghuthaymi
- Biology Department, Science and Humanities College, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
- Correspondence: (K.A.A.-E.); or (S.V.P.); Tel.: +91-0257-2257421–25 (S.V.P.)
| | - Satish V. Patil
- Department of Biochemistry, School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon 425001, India
- Correspondence: (K.A.A.-E.); or (S.V.P.); Tel.: +91-0257-2257421–25 (S.V.P.)
| |
Collapse
|
7
|
González-Fernández S, Lozano-Iturbe V, Menéndez MF, Ordiales H, Fernández-Vega I, Merayo J, Vazquez F, Quirós LM, Martín C. A Promising Antifungal and Antiamoebic Effect of Silver Nanorings, a Novel Type of AgNP. Antibiotics (Basel) 2022; 11:1054. [PMID: 36009923 PMCID: PMC9405138 DOI: 10.3390/antibiotics11081054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Silver nanoparticles (AgNPs) play an important role in the medical field due to their potent antimicrobial activity. This, together with the constant emergence of resistance to antimicrobial drugs, means AgNPs are often investigated as an alternative to solve this problem. In this article, we analyzed the antifungal and antiamoebic effects of a recently described type of AgNP, silver nanorings (AgNRs), and compared them with other types of AgNPs. Tests of the activity of AgNPs against various fungal and amoebic species were carried out. In all cases, AgNPs showed a high biocidal effect, although with fungi this depended on the species involved. Antifungal activity was detected by the conditioning of culture media or water but this effect was not dependent on the release of Ag ions. On the other hand, the proliferation of Acanthamoeba castellanii trophozoites was reduced by silver nanorings (AgNRs) and silver nanowires (AgNWs), with AgNWs being capable of totally inhibiting the germination of A. castellanii cysts. AgNRs constitute a new type of AgNP with an antifungal and antiacanthamoebic activity. These results open the door to new and effective antimicrobial therapies as an alternative to the use of antifungals or antiamoebic drugs, thus avoiding the constant appearance of resistance and the difficulty of eradicating infections.
Collapse
Affiliation(s)
- Sara González-Fernández
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (S.G.-F.); (V.L.-I.); (H.O.); (F.V.)
- Instituto Universitario Fernández-Vega, University of Oviedo, Av. Drs Fernández Vega 34, 33012 Oviedo, Spain; (I.F.-V.); (J.M.)
| | - Victor Lozano-Iturbe
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (S.G.-F.); (V.L.-I.); (H.O.); (F.V.)
- Instituto Universitario Fernández-Vega, University of Oviedo, Av. Drs Fernández Vega 34, 33012 Oviedo, Spain; (I.F.-V.); (J.M.)
| | - Mª Fe Menéndez
- Department of Photonics, ITMA Materials Technology, 33490 Avilés, Spain;
| | - Helena Ordiales
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (S.G.-F.); (V.L.-I.); (H.O.); (F.V.)
- Instituto Universitario Fernández-Vega, University of Oviedo, Av. Drs Fernández Vega 34, 33012 Oviedo, Spain; (I.F.-V.); (J.M.)
| | - Iván Fernández-Vega
- Instituto Universitario Fernández-Vega, University of Oviedo, Av. Drs Fernández Vega 34, 33012 Oviedo, Spain; (I.F.-V.); (J.M.)
- Department of Pathology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain
| | - Jesús Merayo
- Instituto Universitario Fernández-Vega, University of Oviedo, Av. Drs Fernández Vega 34, 33012 Oviedo, Spain; (I.F.-V.); (J.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias, Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain
- Department of Surgery, University of Oviedo, 33006 Oviedo, Spain
| | - Fernando Vazquez
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (S.G.-F.); (V.L.-I.); (H.O.); (F.V.)
- Instituto Universitario Fernández-Vega, University of Oviedo, Av. Drs Fernández Vega 34, 33012 Oviedo, Spain; (I.F.-V.); (J.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias, Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain
- Department of Microbiology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Luis M. Quirós
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (S.G.-F.); (V.L.-I.); (H.O.); (F.V.)
- Instituto Universitario Fernández-Vega, University of Oviedo, Av. Drs Fernández Vega 34, 33012 Oviedo, Spain; (I.F.-V.); (J.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias, Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain
| | - Carla Martín
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (S.G.-F.); (V.L.-I.); (H.O.); (F.V.)
- Instituto Universitario Fernández-Vega, University of Oviedo, Av. Drs Fernández Vega 34, 33012 Oviedo, Spain; (I.F.-V.); (J.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias, Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain
| |
Collapse
|
8
|
Bellini NK, Thiemann OH, Reyes-Batlle M, Lorenzo-Morales J, Costa AO. A history of over 40 years of potentially pathogenic free-living amoeba studies in Brazil - a systematic review. Mem Inst Oswaldo Cruz 2022; 117:e210373. [PMID: 35792751 PMCID: PMC9252135 DOI: 10.1590/0074-02760210373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/28/2022] [Indexed: 12/17/2022] Open
Abstract
Free-living amoeba (FLA) group includes the potentially pathogenic genera Acanthamoeba, Naegleria, Balamuthia, Sappinia, and Vermamoeba, causative agents of human infections (encephalitis, keratitis, and disseminated diseases). In Brazil, the first report on pathogenic FLA was published in the 70s and showed meningoencephalitis caused by Naegleria spp. FLA studies are emerging, but no literature review is available to investigate this trend in Brazil critically. Thus, the present work aims to integrate and discuss these data. Scopus, PubMed, and Web of Science were searched, retrieving studies from 1974 to 2020. The screening process resulted in 178 papers, which were clustered into core and auxiliary classes and sorted into five categories: wet-bench studies, dry-bench studies, clinical reports, environmental identifications, and literature reviews. The papers dating from the last ten years account for 75% (134/178) of the total publications, indicating the FLA topic has gained Brazilian interest. Moreover, 81% (144/178) address Acanthamoeba-related matter, revealing this genus as the most prevalent in all categories. Brazil’s Southeast, South, and Midwest geographic regions accounted for 96% (171/178) of the publications studied in the present work. To the best of our knowledge, this review is the pioneer in summarising the FLA research history in Brazil.
Collapse
Affiliation(s)
- Natália Karla Bellini
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Belo Horizonte, MG, Brasil
| | - Otavio Henrique Thiemann
- Universidade de São Paulo, Instituto de Física de São Carlos, São Carlos, SP, Brasil.,Universidade Federal de São Carlos, Departamento de Genética e Evolução, São Carlos, SP, Brasil
| | - María Reyes-Batlle
- Universidad de La Laguna, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Red de Investigación Cooperativa en Enfermedades Tropicales, Tenerife, Islas Canarias, Spain
| | - Jacob Lorenzo-Morales
- Universidad de La Laguna, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Red de Investigación Cooperativa en Enfermedades Tropicales, Tenerife, Islas Canarias, Spain.,Instituto de Salud Carlos III, Consorcio Centro de Investigación Biomédica en Red MP de Enfermedades Infecciosas, Madrid, Spain
| | - Adriana Oliveira Costa
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Belo Horizonte, MG, Brasil
| |
Collapse
|
9
|
Padzik M, Chomicz L, Bluszcz J, Maleszewska K, Grobelny J, Conn DB, Hendiger EB. Tannic Acid-Modified Silver Nanoparticles in Conjunction with Contact Lens Solutions Are Useful for Progress against the Adhesion of Acanthamoeba spp. to Contact Lenses. Microorganisms 2022; 10:microorganisms10061076. [PMID: 35744595 PMCID: PMC9230222 DOI: 10.3390/microorganisms10061076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Acanthamoeba spp. are amphizoic amoebae that are widely distributed in the environment and capable of entering the human body. They can cause pathogenic effects in different tissues and organs, including Acanthamoeba keratitis (AK), which may result in a loss of visual acuity and blindness. The diagnostics, treatment, and prevention of AK are still challenging. More than 90% of AK cases are related to the irresponsible wearing of contact lenses. However, even proper lens care does not sufficiently protect against this eye disease, as amoebae have been also found in contact lens solutions and contact lens storage containers. The adhesion of the amoebae to the contact lens surface is the first step in developing this eye infection. To limit the incidence of AK, it is important to enhance the anti-adhesive activity of the most popular contact lens solutions. Currently, silver nanoparticles (AgNPs) are used as modern antimicrobial agents. Their effectiveness against Acanthamoeba spp., especially with the addition of plant metabolites, such as tannic acid, has been confirmed. Here, we present the results of our further studies on the anti-adhesion potential of tannic acid-modified silver nanoparticles (AgTANPs) in combination with selected contact lens solutions against Acanthamoeba spp. on four groups of contact lenses. The obtained results showed an increased anti-adhesion activity of contact lens solutions in conjunction with AgTANPs with a limited cytotoxicity effect compared to contact lens solutions acting alone. This may provide a benefit in improving the prevention of amoebae eye infections. However, there is still a need for further studies on different pathogenic strains of Acanthamoeba in order to assess the adhesion of the cysts to the contact lens surface and to reveal a more comprehensive picture of the activity of AgTANPs and contact lens solutions.
Collapse
Affiliation(s)
- Marcin Padzik
- Parasitology Laboratory, Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (L.C.); (J.B.); (K.M.); (E.B.H.)
- Correspondence:
| | - Lidia Chomicz
- Parasitology Laboratory, Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (L.C.); (J.B.); (K.M.); (E.B.H.)
| | - Julita Bluszcz
- Parasitology Laboratory, Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (L.C.); (J.B.); (K.M.); (E.B.H.)
| | - Karolina Maleszewska
- Parasitology Laboratory, Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (L.C.); (J.B.); (K.M.); (E.B.H.)
| | - Jaroslaw Grobelny
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, 163 Pomorska Street, 90-236 Lodz, Poland;
| | - David Bruce Conn
- Department of Invertebrate Zoology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA; or
- One Health Center, School of Mathematical and Natural Sciences, Berry College, Mount Berry, GA 30149, USA
| | - Edyta B. Hendiger
- Parasitology Laboratory, Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (L.C.); (J.B.); (K.M.); (E.B.H.)
| |
Collapse
|