1
|
Packer JA, Zavadska D, Weston EJ, Eglit Y, Richter DJ, Simpson AGB. Characterization of Allobodo yubaba sp. nov. and Novijibodo darinka gen. et sp. nov., cultivable free-living species of the phylogenetically enigmatic kinetoplastid taxon Allobodonidae. J Eukaryot Microbiol 2025; 72:e13072. [PMID: 39868642 PMCID: PMC11771631 DOI: 10.1111/jeu.13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 01/28/2025]
Abstract
Kinetoplastids are a large and diverse protist group, spanning ecologically important free-living forms to medically important parasites. The taxon Allobodonidae holds an unresolved position within kinetoplastids, and the sole described species, Allobodo chlorophagus, is uncultivated, being a necrotroph/parasite of macroalgae. Here we describe Allobodo yubaba sp. nov. and Novijibodo darinka gen. nov. et sp. nov., both free-living bacterivores isolated into monoeukaryotic cultures. Electron microscopy shows that both A. yubaba and N. darinka have a microtubular prism in the feeding apparatus (absent in A. chlorophagus), and an ovoid eukinetoplast, rather than pan-kDNA as in A. chlorophagus. Phylogenetic analyses of SSU rDNA sequences robustly place A. yubaba as the sister to A. chlorophagus, while N. darinka branches separately within Allobodonidae, as a sister group of undescribed freshwater isolates. We view Allobodonidae as containing at least four genus-level clades: Allobodo (A. chlorophagus and A. yubaba n. sp.), an undescribed fresh-water clade, an undescribed marine clade, and now Novijibodo-with N. darinka as its sole known member. Electron microscopy also revealed a rod-shaped gram-negative bacterial cytoplasmic endosymbiont in our N. darinka isolate. The availability of these species in monoeukaryotic culture should facilitate future research, including resolving the position of Allobodonidae using phylogenomic approaches.
Collapse
Affiliation(s)
- Julia A. Packer
- Institute for Comparative Genomics, and Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Daryna Zavadska
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
| | - Elizabeth J. Weston
- Institute for Comparative Genomics, and Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Yana Eglit
- Institute for Comparative Genomics, and Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Daniel J. Richter
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
| | - Alastair G. B. Simpson
- Institute for Comparative Genomics, and Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
2
|
Motta MCM, Camelo TM, Cerdeira CMC, Gonçalves CS, Borghesan TC, Villalba-Alemán E, de Souza W, Teixeira MMG, de Camargo EFP. Phylogenetic and structural characterization of Kentomonas inusitatus n. sp.: Unique insect trypanosomatid of the Strigomonadinae subfamily naturally lacking bacterial endosymbiont. J Eukaryot Microbiol 2025; 72:e13083. [PMID: 39835397 DOI: 10.1111/jeu.13083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/02/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
All insect trypanosomatids of the subfamily Strigomonadinae harbor a proteobacterial symbiont in their cytoplasm and unique ultrastructural cell organization. Here, we report an unexpected finding within the Strigomonadinae subfamily: the identification of a new species lacking bacterial symbiont, represented by two isolates obtained from Calliphoridae flies in Brazil and Uganda. This species is hereby designated as Kentomonas inusitatus n. sp. Molecular investigations targeting symbiont DNA, cell proliferation, and ultrastructural analyses agreed with the absence of bacterial symbionts in cultured flagellates. PCR-screening specifically targeting symbiont DNA corroborated the absence of symbionts in K. inusitatus present in the intestine of the respective host flies. K. inusitatus exhibited forms varying in size and shape. While displaying overall ultrastructural features of the Strigomonadinae, the novel species showed mitochondrial branches juxtaposed to the plasma membrane in locations both without and notable, with subpellicular microtubules. The discovery of the first Strigomonadinae species naturally lacking a symbiont and closely related to K. sorsogonicus, suggests a unique evolutionary history for the genus Kentomonas. Our findings provide novel insights into the complex relationships between trypanosomatids and their symbionts.
Collapse
Affiliation(s)
- Maria Cristina Machado Motta
- Laboratório de Ultraestrutura Celular Herta Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil
| | - Tayná Mourão Camelo
- Laboratório de Ultraestrutura Celular Herta Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil
| | | | - Camila Silva Gonçalves
- Laboratório de Ultraestrutura Celular Herta Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil
| | - Tarcilla Corrente Borghesan
- Departmento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Evaristo Villalba-Alemán
- Departmento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Herta Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil
| | - Marta Maria Geraldes Teixeira
- Departmento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
- Instituto Nacional de Ciência e Tecnologia Epidemiologia da Amazonia Ocidental, ICB/USP-FIOCRUZ- Rondônia, São Paulo, Brazil
| | - Erney Felicio Plessmann de Camargo
- Departmento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
- Instituto Nacional de Ciência e Tecnologia Epidemiologia da Amazonia Ocidental, ICB/USP-FIOCRUZ- Rondônia, São Paulo, Brazil
| |
Collapse
|
3
|
Morales J, Ehret G, Poschmann G, Reinicke T, Maurya AK, Kröninger L, Zanini D, Wolters R, Kalyanaraman D, Krakovka M, Bäumers M, Stühler K, Nowack ECM. Host-symbiont interactions in Angomonas deanei include the evolution of a host-derived dynamin ring around the endosymbiont division site. Curr Biol 2023; 33:28-40.e7. [PMID: 36480982 DOI: 10.1016/j.cub.2022.11.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/09/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
The trypanosomatid Angomonas deanei is a model to study endosymbiosis. Each cell contains a single β-proteobacterial endosymbiont that divides at a defined point in the host cell cycle and contributes essential metabolites to the host metabolism. Additionally, one endosymbiont gene, encoding an ornithine cyclodeaminase (OCD), was transferred by endosymbiotic gene transfer (EGT) to the nucleus. However, the molecular mechanisms mediating the intricate host/symbiont interactions are largely unexplored. Here, we used protein mass spectrometry to identify nucleus-encoded proteins that co-purify with the endosymbiont. Expression of fluorescent fusion constructs of these proteins in A. deanei confirmed seven host proteins to be recruited to specific sites within the endosymbiont. These endosymbiont-targeted proteins (ETPs) include two proteins annotated as dynamin-like protein and peptidoglycan hydrolase that form a ring-shaped structure around the endosymbiont division site that remarkably resembles organellar division machineries. The EGT-derived OCD was not among the ETPs, but instead localizes to the glycosome, likely enabling proline production in the glycosome. We hypothesize that recalibration of the metabolic capacity of the glycosomes that are closely associated with the endosymbiont helps to supply the endosymbiont with metabolites it is auxotrophic for and thus supports the integration of host and endosymbiont metabolic networks. Hence, scrutiny of endosymbiosis-induced protein re-localization patterns in A. deanei yielded profound insights into how an endosymbiotic relationship can stabilize and deepen over time far beyond the level of metabolite exchange.
Collapse
Affiliation(s)
- Jorge Morales
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Georg Ehret
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tobias Reinicke
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Anay K Maurya
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lena Kröninger
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Davide Zanini
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Rebecca Wolters
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Dhevi Kalyanaraman
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Michael Krakovka
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Miriam Bäumers
- Center for Advanced Imaging, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany; Molecular Proteomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany
| | - Eva C M Nowack
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
4
|
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done? Pathogens 2021; 10:pathogens10091124. [PMID: 34578156 PMCID: PMC8472099 DOI: 10.3390/pathogens10091124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Trypanosomatids are easy to cultivate and they are (in many cases) amenable to genetic manipulation. Genome sequencing has become a standard tool routinely used in the study of these flagellates. In this review, we summarize the current state of the field and our vision of what needs to be done in order to achieve a more comprehensive picture of trypanosomatid evolution. This will also help to illuminate the lineage-specific proteins and pathways, which can be used as potential targets in treating diseases caused by these parasites.
Collapse
|