1
|
Jain A, Li T, Wainer J, Edwards J, Rodoni BC, Sawbridge TI. High-Throughput Sequencing Enables Rapid Analyses of Nematode Mitochondrial Genomes from an Environmental Sample. Pathogens 2025; 14:234. [PMID: 40137719 PMCID: PMC11944570 DOI: 10.3390/pathogens14030234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Mitochondrial genomes serve as essential tools in evolutionary biology, phylogenetics, and population genetics due to their maternal inheritance, lack of recombination, and conserved structure. Traditional morphological methods for identifying nematodes are often insufficient for distinguishing cryptic species complexes. This study highlights recent advancements in nematode mitochondrial genome research, particularly the impact of long-read sequencing technologies such as Oxford Nanopore. These technologies have facilitated the assembly of mitochondrial genomes from mixed soil samples, overcoming challenges associated with designing specific primers for long PCR amplification across different groups of parasitic nematodes. In this study, we successfully recovered and assembled eleven nematode mitochondrial genomes using long-read sequencing, including those of two plant-parasitic nematode species. Notably, we detected Heterodera cruciferae in Victoria, expanding its known geographic range within Australia. Additionally, short-read sequencing data from a previous draft genome study revealed the presence of the mitochondrial genome of Heterodera filipjevi. Comparative analyses of Heterodera mitogenomes revealed conserved protein-coding genes essential for oxidative phosphorylation, as well as gene rearrangements and variations in transfer RNA placement, which may reflect adaptations to parasitic lifestyles. The consistently high A+T content and strand asymmetry observed across species align with trends reported in related genera. This study demonstrates the utility of long-read sequencing for identifying coexisting nematode species in agricultural fields, providing a rapid, accurate, and comprehensive alternative to traditional diagnostic methods. By incorporating non-target endemic species into public databases, this approach enhances biodiversity records and informs biosecurity strategies. These findings reinforce the potential of mitochondrial genomics to strengthen Australia's as well as the global biosecurity framework against plant-parasitic nematode threats.
Collapse
Affiliation(s)
- Akshita Jain
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia; (J.E.); (B.C.R.); (T.I.S.)
- AgriBio, Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC 3083, Australia; (T.L.); (J.W.)
| | - Tongda Li
- AgriBio, Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC 3083, Australia; (T.L.); (J.W.)
| | - John Wainer
- AgriBio, Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC 3083, Australia; (T.L.); (J.W.)
| | - Jacqueline Edwards
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia; (J.E.); (B.C.R.); (T.I.S.)
- AgriBio, Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC 3083, Australia; (T.L.); (J.W.)
| | - Brendan C. Rodoni
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia; (J.E.); (B.C.R.); (T.I.S.)
- AgriBio, Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC 3083, Australia; (T.L.); (J.W.)
| | - Timothy I. Sawbridge
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia; (J.E.); (B.C.R.); (T.I.S.)
- AgriBio, Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC 3083, Australia; (T.L.); (J.W.)
| |
Collapse
|
2
|
Camacho MJ, Albuquerque DC, Inácio ML, Martins VC, Mota M, Freitas PP, de Andrade E. FTA-LAMP based biosensor for a rapid in-field detection of Globodera pallida-the pale potato cyst nematode. Front Bioeng Biotechnol 2024; 12:1337879. [PMID: 38303911 PMCID: PMC10830618 DOI: 10.3389/fbioe.2024.1337879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
The combination of a sensitive and specific magnetoresistive sensing device with an easy DNA extraction method and a rapid isothermal amplification is presented here targeting the on-site detection of Globodera pallida, a potato endoparasitic nematode. FTA-cards were used for DNA extraction, LAMP was the method developed for DNA amplification and a nanoparticle functionalized magnetic-biosensor was used for the detection. The combinatorial effect of these three emerging technologies has the capacity to detect G. pallida with a detection limit of one juvenile, even when mixed with other related species. This combined system is far more interesting than what a single technology can provide. Magnetic biosensors can be combined with any DNA extraction protocol and LAMP forming a new solution to target G. pallida. The probe designed in this study consistently distinguished G. pallida (∆Vac binding/Vac sensor above 1%) from other cyst nematodes (∆Vac binding/Vac sensor below 1%). It was confirmed that DNA either extracted with FTA-cards or Lab extraction Kit was of enough quantity and quality to detect G. pallida whenever present (alone or in mixed samples), ensuring probe specificity and sensitivity. This work provides insights for a new strategy to construct advanced devices for pathogens in-field diagnostics. LAMP runs separately but can be easily integrated into a single device.
Collapse
Affiliation(s)
- Maria João Camacho
- INIAV—National Institute for Agriculture and Veterinary Research, Oeiras, Portugal
- NemaLab/ MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, University of Évora, Évora, Portugal
- INESC Microsistemas e Nanotecnologias, Lisbon, Portugal
| | - Débora C. Albuquerque
- INESC Microsistemas e Nanotecnologias, Lisbon, Portugal
- IST—Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Maria L. Inácio
- INIAV—National Institute for Agriculture and Veterinary Research, Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | | | - Manuel Mota
- NemaLab/ MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, University of Évora, Évora, Portugal
| | - Paulo P. Freitas
- INESC Microsistemas e Nanotecnologias, Lisbon, Portugal
- INL—International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Eugénia de Andrade
- INIAV—National Institute for Agriculture and Veterinary Research, Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| |
Collapse
|
3
|
Bairwa A, Dipta B, Verma G, Venkatasalam EP, Shanthi A, Jeevalatha A, Naga KC, Sharma S, Thakur D, Mhatre PH. Development and evaluation of loop-mediated isothermal amplification assay for rapid and sensitive detection of potato cyst nematode, Globodera pallida from soil. 3 Biotech 2023; 13:123. [PMID: 37033385 PMCID: PMC10079789 DOI: 10.1007/s13205-023-03542-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Potato cyst nematodes, Globodera pallida and G. rostochiensis, are economically important and difficult to manage pests of the potato crop. The cyst of both the species looks similar and it is difficult to differentiate once it turns brown upon maturity. Early detection of the PCN at the species level is crucial to avoid its further spread and for adopting the appropriate management strategies. Therefore, in the present study, highly specific and sensitive loop-mediated isothermal amplification (LAMP) assay was developed to amplify mitochondrial-Sequence Characterized Amplified Region (SCAR) sequence of potato cyst nematode, G. pallida. The LAMP assay was completed within a shorter incubation period of 60 min at 60 °C followed by the reaction termination at 80 °C for 5 min. The developed LAMP assay exhibited high specificity for G. pallida and did not detect any other species including its sibling species, G. rostochiensis. In sensitivity tests, the assay detected G. pallida at 1000 times less DNA concentration (10 fg/µl) as compared to conventional PCR (10 pg/µl). In addition to this, the developed LAMP assay was tested for the detection of G. pallida directly from the soil samples, and even a single cyst mixed with soil was successfully detected by the developed assay. Moreover, the utility of low-cost instruments like hot water bath was also demonstrated for the detection of G. pallida from the soil. The developed LAMP is a rapid, highly specific, sensitive, and cost-effective technique for the species-specific detection of G. pallida. The developed assay will facilitate the rapid detection of G. pallida at quarantine stations as well as from the fields which will help to stop its further spread in new areas and also to devise effective management strategies for sustainable potato production. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03542-x.
Collapse
Affiliation(s)
- Aarti Bairwa
- ICAR-Central Potato Research Institute, Shimla, 171 001 Himachal Pradesh India
| | - Bhawna Dipta
- ICAR-Central Potato Research Institute, Shimla, 171 001 Himachal Pradesh India
| | - Gaurav Verma
- ICAR-Central Potato Research Institute, Shimla, 171 001 Himachal Pradesh India
| | - E. P. Venkatasalam
- ICAR-Central Potato Research Institute, Regional Station, The Nilgiris, Udhagamandalam, 643004 Tamil Nadu India
| | - A. Shanthi
- Department of Nematology, Tamil Nadu Agricultural University, Coimbatore, 641003 Tamil Nadu India
| | - A. Jeevalatha
- ICAR-Indian Institute of Spices Research, Kozhikode, 673012 Kerala India
| | - Kailash C. Naga
- ICAR-Central Potato Research Institute, Shimla, 171 001 Himachal Pradesh India
| | - Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla, 171 001 Himachal Pradesh India
| | - Deepali Thakur
- ICAR-Central Potato Research Institute, Shimla, 171 001 Himachal Pradesh India
| | - Priyank Hanuman Mhatre
- ICAR-Central Potato Research Institute, Regional Station, The Nilgiris, Udhagamandalam, 643004 Tamil Nadu India
| |
Collapse
|
4
|
Camacho MJ, Albuquerque DC, de Andrade E, Martins VC, Inácio ML, Mota M, Freitas PP. A Lab-on-a-Chip Approach for the Detection of the Quarantine Potato Cyst Nematode Globodera pallida. SENSORS (BASEL, SWITZERLAND) 2023; 23:647. [PMID: 36679443 PMCID: PMC9861625 DOI: 10.3390/s23020647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The potato cyst nematode (PCN), Globodera pallida, has acquired significant importance throughout Europe due to its widespread prevalence and negative effects on potato production. Thus, rapid and reliable diagnosis of PCN is critical during surveillance programs and for the implementation of control measures. The development of innovative technologies to overcome the limitations of current methodologies in achieving early detection is needed. Lab-on-a-chip devices can swiftly and accurately detect the presence of certain nucleotide sequences with high sensitivity and convert the presence of biological components into an understandable electrical signal by combining biosensors with microfluidics-based biochemical analysis. In this study, a specific DNA-probe sequence and PCR primers were designed to be used in a magnetoresistive biosensing platform to amplify the internal transcribed spacer region of the ribosomal DNA of G. pallida. Magnetic nanoparticles were used as the labelling agents of asymmetric PCR product through biotin−streptavidin interaction. Upon target hybridization to sensor immobilized oligo probes, the fringe field created by the magnetic nanoparticles produces a variation in the sensor’s electrical resistance. The detection signal corresponds to the concentration of target molecules present in the sample. The results demonstrate the suitability of the magnetic biosensor to detect PCR target product and the specificity of the probe, which consistently distinguishes G. pallida (DV/V > 1%) from other cyst nematodes (DV/V < 1%), even when DNA mixtures were tested at different concentrations. This shows the magnetic biosensor’s potential as a bioanalytical device for field applications and border phytosanitary inspections.
Collapse
Affiliation(s)
- Maria João Camacho
- INIAV, I.P.—National Institute for Agriculture and Veterinary Research, 2780-159 Oeiras, Portugal
- NemaLab, MED–Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, University of Évora, 7006-554 Évora, Portugal
| | - Débora C. Albuquerque
- INESC-MN- Microsystems and Nanotechnologies, 1000-029 Lisbon, Portugal
- IST—Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Eugénia de Andrade
- INIAV, I.P.—National Institute for Agriculture and Veterinary Research, 2780-159 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, 2780-157 Oeiras, Portugal
| | | | - Maria L. Inácio
- INIAV, I.P.—National Institute for Agriculture and Veterinary Research, 2780-159 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, 2780-157 Oeiras, Portugal
| | - Manuel Mota
- NemaLab, MED–Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, University of Évora, 7006-554 Évora, Portugal
| | - Paulo P. Freitas
- INESC-MN- Microsystems and Nanotechnologies, 1000-029 Lisbon, Portugal
- INL—International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| |
Collapse
|
5
|
Abstract
Plant-parasitic nematodes (PPNs) are important pests that cause an estimated ten billion dollars of crop loss each year in the United States and over 100 billion dollars globally. The Animal and Plant Health Inspection Service (APHIS) within the U.S. Department of Agriculture maintains and updates the U.S. Regulated Plant Pest list. Currently, the number of PPNs regulated by APHIS includes more than 60 different species. This review focuses on the top ten most economically important regulated and emerging plant-parasitic nematodes and summarizes the diagnostics of morphological and some molecular features for distinguishing them. These ten major previously described nematode species are associated with various economically important crops from around the world. This review also includes their current distribution in the U.S. and a brief historical background and updated systematic position of these species. The species included in this review include three PPNs considered by the U.S. Department of Agriculture as invasive invertebrates Globodera pallida, Globodera rostochiensis, and Heterodera glycines; four regulated PPNs, namely Bursaphelenchus xylophilus, Meloidogyne fallax, Ditylenchus dipsaci, and Pratylenchus fallax; and the three emerging PPNs Meloidogyne chitwoodi, Meloidogyne enterolobii, and Litylenchus crenatae mccannii.
Collapse
|