1
|
Degiacomi G, Chiarelli LR, Riabova O, Loré NI, Muñoz-Muñoz L, Recchia D, Stelitano G, Postiglione U, Saliu F, Griego A, Scoffone VC, Kazakova E, Scarpa E, Ezquerra-Aznárez JM, Stamilla A, Buroni S, Tortoli E, Rizzello L, Sassera D, Ramón-García S, Cirillo DM, Makarov V, Pasca MR. The novel drug candidate VOMG kills Mycobacterium abscessus and other pathogens by inhibiting cell division. Int J Antimicrob Agents 2024; 64:107278. [PMID: 39069229 DOI: 10.1016/j.ijantimicag.2024.107278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/14/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
AIMS The incidence of lung infections is increasing worldwide in individuals suffering from cystic fibrosis and chronic obstructive pulmonary disease. Mycobacterium abscessus is associated with chronic lung deterioration in these populations. The intrinsic resistance of M. abscessus to most conventional antibiotics jeopardizes treatment success rates. To date, no single drug has been developed targeting M. abscessus specifically. The objective of this study was to characterize VOMG, a pyrithione-core drug-like small molecule, as a new compound active against M. abscessus and other pathogens. METHODS A multi-disciplinary approach including microbiological, chemical, biochemical and transcriptomics procedures was used to validate VOMG as a promising anti-M. abscessus drug candidate. RESULTS To the authors' knowledge, this is the first study to report the in-vitro and in-vivo bactericidal activity of VOMG against M. abscessus and other pathogens. Besides being active against M. abscessus biofilm, the compound showed a favourable pharmacological (ADME-Tox) profile. Frequency of resistance studies were unable to isolate resistant mutants. VOMG inhibits cell division, particularly the FtsZ enzyme. CONCLUSIONS VOMG is a new drug-like molecule active against M. abscessus, inhibiting cell division with broad-spectrum activity against other microbial pathogens.
Collapse
Affiliation(s)
- Giulia Degiacomi
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Laurent R Chiarelli
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Olga Riabova
- Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Nicola Ivan Loré
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lara Muñoz-Muñoz
- Department of Microbiology/Faculty of Medicine, University of Zaragoza, Zaragoza, Spain
| | - Deborah Recchia
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Giovanni Stelitano
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Umberto Postiglione
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Fabio Saliu
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Griego
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy; National Institute of Molecular Genetics, Milan, Italy
| | - Viola Camilla Scoffone
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Elena Kazakova
- Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Edoardo Scarpa
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy; National Institute of Molecular Genetics, Milan, Italy
| | | | - Alessandro Stamilla
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Enrico Tortoli
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Loris Rizzello
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy; National Institute of Molecular Genetics, Milan, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy; Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Santiago Ramón-García
- Department of Microbiology/Faculty of Medicine, University of Zaragoza, Zaragoza, Spain; Research and Development Agency of Aragon Foundation, Zaragoza, Spain; Spanish Network for Research on Respiratory Diseases, Carlos III Health Institute, Madrid, Spain.
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Vadim Makarov
- Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia.
| | - Maria Rosalia Pasca
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy; Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
2
|
Restivo E, Peluso E, Bloise N, Bello GL, Bruni G, Giannaccari M, Raiteri R, Fassina L, Visai L. Surface Properties of a Biocompatible Thermoplastic Polyurethane and Its Anti-Adhesive Effect against E. coli and S. aureus. J Funct Biomater 2024; 15:24. [PMID: 38248691 PMCID: PMC10816734 DOI: 10.3390/jfb15010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Thermoplastic polyurethane (TPU) is a polymer used in a variety of fields, including medical applications. Here, we aimed to verify if the brush and bar coater deposition techniques did not alter TPU properties. The topography of the TPU-modified surfaces was studied via AFM demonstrating no significant differences between brush and bar coater-modified surfaces, compared to the un-modified TPU (TPU Film). The effect of the surfaces on planktonic bacteria, evaluated by MTT assay, demonstrated their anti-adhesive effect on E. coli, while the bar coater significantly reduced staphylococcal planktonic adhesion and both bacterial biofilms compared to other samples. Interestingly, Pearson's R coefficient analysis showed that Ra roughness and Haralick's correlation feature were trend predictors for planktonic bacterial cells adhesion. The surface adhesion property was evaluated against NIH-3T3 murine fibroblasts by MTT and against human fibrinogen and human platelet-rich plasma by ELISA and LDH assay, respectively. An indirect cytotoxicity experiment against NIH-3T3 confirmed the biocompatibility of the TPUs. Overall, the results indicated that the deposition techniques did not alter the antibacterial and anti-adhesive surface properties of modified TPU compared to un-modified TPU, nor its bio- and hemocompatibility, confirming the suitability of TPU brush and bar coater films in the biomedical and pharmaceutical fields.
Collapse
Affiliation(s)
- Elisa Restivo
- Department of Molecular Medicine, Centre for Health Technologies (CHT), Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), Research Unit (UdR) Pavia, University of Pavia, 27100 Pavia, Italy; (E.R.); (E.P.); (M.G.); (L.V.)
- . Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), University of Pavia Unit, 27100 Pavia, Italy
| | - Emanuela Peluso
- Department of Molecular Medicine, Centre for Health Technologies (CHT), Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), Research Unit (UdR) Pavia, University of Pavia, 27100 Pavia, Italy; (E.R.); (E.P.); (M.G.); (L.V.)
- . Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), University of Pavia Unit, 27100 Pavia, Italy
| | - Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies (CHT), Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), Research Unit (UdR) Pavia, University of Pavia, 27100 Pavia, Italy; (E.R.); (E.P.); (M.G.); (L.V.)
- . Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), University of Pavia Unit, 27100 Pavia, Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| | - Giovanni Lo Bello
- Department of Informatics, Bioengineering, Robotics and System Engineering—DIBRIS, University of Genoa, 16145 Genoa, Italy; (G.L.B.); (R.R.)
| | - Giovanna Bruni
- Department of Chemistry, Physical Chemistry Section, University of Pavia, 27100 Pavia, Italy;
| | - Marialaura Giannaccari
- Department of Molecular Medicine, Centre for Health Technologies (CHT), Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), Research Unit (UdR) Pavia, University of Pavia, 27100 Pavia, Italy; (E.R.); (E.P.); (M.G.); (L.V.)
- . Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), University of Pavia Unit, 27100 Pavia, Italy
| | - Roberto Raiteri
- Department of Informatics, Bioengineering, Robotics and System Engineering—DIBRIS, University of Genoa, 16145 Genoa, Italy; (G.L.B.); (R.R.)
| | - Lorenzo Fassina
- Department of Electrical, Computer and Biomedical Engineering, Centre for Health Technologies (CHT), University of Pavia, 27100 Pavia, Italy
| | - Livia Visai
- Department of Molecular Medicine, Centre for Health Technologies (CHT), Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), Research Unit (UdR) Pavia, University of Pavia, 27100 Pavia, Italy; (E.R.); (E.P.); (M.G.); (L.V.)
- . Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), University of Pavia Unit, 27100 Pavia, Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| |
Collapse
|
3
|
Dapporto M, Tavoni M, Restivo E, Carella F, Bruni G, Mercatali L, Visai L, Tampieri A, Iafisco M, Sprio S. Strontium-doped apatitic bone cements with tunable antibacterial and antibiofilm ability. Front Bioeng Biotechnol 2022; 10:969641. [PMID: 36568303 PMCID: PMC9780487 DOI: 10.3389/fbioe.2022.969641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Injectable calcium phosphate cements (CPCs) represent promising candidates for the regeneration of complex-shape bone defects, thanks to self-hardening ability, bioactive composition and nanostructure offering high specific surface area for cell attachment and conduction. Such features make CPCs also interesting for functionalization with various biomolecules, towards the generation of multifunctional devices with enhanced therapeutic ability. In particular, strontium-doped CPCs have been studied in the last years due to the intrinsic antiosteoporotic character of strontium. In this work, a SrCPC previously reported as osteointegrative and capable to modulate the fate of bone cells was enriched with hydroxyapatite nanoparticles (HA-NPs) functionalized with tetracycline (TC) to provide antibacterial activity. We found that HA-NPs functionalized with TC (NP-TC) can act as modulator of the drug release profile when embedded in SrCPCs, thus providing a sustained and tunable TC release. In vitro microbiological tests on Escherichia coli and Staphylococcus aureus strains proved effective bacteriostatic and bactericidal properties, especially for the NP-TC loaded SrCPC formulations. Overall, our results indicate that the addition of NP-TC on CPC acted as effective modulator towards a tunable drug release control in the treatment of bone infections or cancers.
Collapse
Affiliation(s)
- Massimiliano Dapporto
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC) (Former ISTEC), National Research Council (CNR), Faenza, Italy
| | - Marta Tavoni
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC) (Former ISTEC), National Research Council (CNR), Faenza, Italy
| | - Elisa Restivo
- Molecular Medicine Department, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia, Italy
| | - Francesca Carella
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC) (Former ISTEC), National Research Council (CNR), Faenza, Italy
| | - Giovanna Bruni
- Department of Chemistry, Physical Chemistry Section, Center for Colloid and Surfaces Science, University of Pavia, Pavia, Italy
| | - Laura Mercatali
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Livia Visai
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC) (Former ISTEC), National Research Council (CNR), Faenza, Italy
- Molecular Medicine Department, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia, Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri. IRCCS, Pavia, Italy
| | - Anna Tampieri
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC) (Former ISTEC), National Research Council (CNR), Faenza, Italy
| | - Michele Iafisco
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC) (Former ISTEC), National Research Council (CNR), Faenza, Italy
| | - Simone Sprio
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC) (Former ISTEC), National Research Council (CNR), Faenza, Italy
| |
Collapse
|
4
|
Scoffone VC, Irudal S, AbuAlshaar A, Piazza A, Trespidi G, Barbieri G, Makarov V, Migliavacca R, De Rossi E, Buroni S. Bactericidal and Anti-Biofilm Activity of the FtsZ Inhibitor C109 against Acinetobacter baumannii. Antibiotics (Basel) 2022; 11:1571. [PMID: 36358226 PMCID: PMC9687021 DOI: 10.3390/antibiotics11111571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 09/29/2023] Open
Abstract
In the last few years, Acinetobacter baumannii has ranked as a number one priority due to its Multi Drug Resistant phenotype. The different metabolic states, such as the one adopted when growing as biofilm, help the bacterium to resist a wide variety of compounds, placing the discovery of new molecules able to counteract this pathogen as a topic of utmost importance. In this context, bacterial cell division machinery and the conserved protein FtsZ are considered very interesting cellular targets. The benzothiadiazole compound C109 is able to inhibit bacterial growth and to block FtsZ GTPase and polymerization activities in Burkholderia cenocepacia, Pseudomonas aeruginosa, and Staphylococcus aureus. In this work, the activity of C109 was tested against a panel of antibiotic sensitive and resistant A. baumannii strains. Its ability to inhibit biofilm formation was explored, together with its activity against the A. baumannii FtsZ purified protein. Our results indicated that C109 has good MIC values against A. baumannii clinical isolates. Moreover, its antibiofilm activity makes it an interesting alternative treatment, effective against diverse metabolic states. Finally, its activity was confirmed against A. baumannii FtsZ.
Collapse
Affiliation(s)
- Viola Camilla Scoffone
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Samuele Irudal
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Aseel AbuAlshaar
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Aurora Piazza
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Gabriele Trespidi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Vadim Makarov
- Research Center of Biotechnology RAS, 119071 Moscow, Russia
| | - Roberta Migliavacca
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Edda De Rossi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
5
|
The Power of Touch: Type 4 Pili, the von Willebrand A Domain, and Surface Sensing by Pseudomonas aeruginosa. J Bacteriol 2022; 204:e0008422. [PMID: 35612303 PMCID: PMC9210963 DOI: 10.1128/jb.00084-22] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Most microbes in the biosphere are attached to surfaces, where they experience mechanical forces due to hydrodynamic flow and cell-to-substratum interactions. These forces likely serve as mechanical cues that influence bacterial physiology and eventually drive environmental adaptation and fitness. Mechanosensors are cellular components capable of sensing a mechanical input and serve as part of a larger system for sensing and transducing mechanical signals. Two cellular components in bacteria that have emerged as candidate mechanosensors are the type IV pili (TFP) and the flagellum. Current models posit that bacteria transmit and convert TFP- and/or flagellum-dependent mechanical force inputs into biochemical signals, including cAMP and c-di-GMP, to drive surface adaptation. Here, we discuss the impact of force-induced changes on the structure and function of two eukaryotic proteins, titin and the human von Willebrand factor (vWF), and these proteins’ relevance to bacteria. Given the wealth of understanding about these eukaryotic mechanosensors, we can use them as a framework to understand the effect of force on Pseudomonas aeruginosa during the early stages of biofilm formation, with a particular emphasis on TFP and the documented surface-sensing mechanosensors PilY1 and FimH. We also discuss the importance of disulfide bonds in mediating force-induced conformational changes, which may modulate mechanosensing and downstream biochemical signaling. We conclude by sharing our perspective on the state of the field and what we deem exciting frontiers in studying bacterial mechanosensing to better understand the mechanisms whereby bacteria transition from a planktonic to a biofilm lifestyle.
Collapse
|
6
|
Pellegrini A, Lentini G, Famà A, Bonacorsi A, Scoffone VC, Buroni S, Trespidi G, Postiglione U, Sassera D, Manai F, Pietrocola G, Firon A, Biondo C, Teti G, Beninati C, Barbieri G. CodY Is a Global Transcriptional Regulator Required for Virulence in Group B Streptococcus. Front Microbiol 2022; 13:881549. [PMID: 35572655 PMCID: PMC9096947 DOI: 10.3389/fmicb.2022.881549] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Group B Streptococcus (GBS) is a Gram-positive bacterium able to switch from a harmless commensal of healthy adults to a pathogen responsible for invasive infections in neonates. The signals and regulatory mechanisms governing this transition are still largely unknown. CodY is a highly conserved global transcriptional regulator that links nutrient availability to the regulation of major metabolic and virulence pathways in low-G+C Gram-positive bacteria. In this work, we investigated the role of CodY in BM110, a GBS strain representative of a hypervirulent lineage associated with the majority of neonatal meningitis. Deletion of codY resulted in a reduced ability of the mutant strain to cause infections in neonatal and adult animal models. The observed decreased in vivo lethality was associated with an impaired ability of the mutant to persist in the blood, spread to distant organs, and cross the blood-brain barrier. Notably, the codY null mutant showed reduced adhesion to monolayers of human epithelial cells in vitro and an increased ability to form biofilms, a phenotype associated with strains able to asymptomatically colonize the host. RNA-seq analysis showed that CodY controls about 13% of the genome of GBS, acting mainly as a repressor of genes involved in amino acid transport and metabolism and encoding surface anchored proteins, including the virulence factor Srr2. CodY activity was shown to be dependent on the availability of branched-chain amino acids, which are the universal cofactors of this regulator. These results highlight a key role for CodY in the control of GBS virulence.
Collapse
Affiliation(s)
- Angelica Pellegrini
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Germana Lentini
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Agata Famà
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Andrea Bonacorsi
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Viola Camilla Scoffone
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Gabriele Trespidi
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Umberto Postiglione
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Federico Manai
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | | | - Arnaud Firon
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Pathogènes à Gram-positif, Paris, France
| | - Carmelo Biondo
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | | | - Concetta Beninati
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| |
Collapse
|