1
|
Deipenbrock A, Wilmes BE, Sommermann T, Abdo N, Moustakas K, Raasch M, Rennert K, Teusch NE. Modelling of the multicellular tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) on a fit-for-purpose biochip for preclinical drug discovery. LAB ON A CHIP 2025; 25:2168-2181. [PMID: 40018951 DOI: 10.1039/d4lc01016g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common and lethal form of pancreatic cancer. One major cause for a fast disease progression is the presence of a highly fibrotic tumor microenvironment (TME) mainly composed of cancer-associated fibroblasts (CAF), and various immune cells, especially tumor-associated macrophages (TAM). To conclusively evaluate drug efficacy, it is crucial to develop in vitro models that can recapitulate the cross talk between tumor cells and the surrounding stroma. Here, we constructed a fit-for-purpose biochip platform which allows the integration of PDAC spheroids (composed of PANC-1 cells and pancreatic stellate cells (PSC)). Additionally, the chip design enables dynamic administration of drugs or immune cells via a layer of human umbilical vein endothelial cells (HUVEC). As a proof-of-concept for drug administration, vorinostat, an FDA-approved histone deacetylase inhibitor for cutaneous T cell lymphoma (CTCL), subjected via continuous flow for 72 h, resulted in a significantly reduced viability of PDAC spheroids without affecting vascular integrity. Furthermore, dynamic perfusion with peripheral mononuclear blood cells (PBMC)-derived monocytes resulted in an immune cell migration through the endothelium into the spheroids. After 72 h of infiltration, monocytes differentiated into macrophages which polarized into the M2 phenotype. The polarization into M2 macrophages persisted for at least 168 h, verified by expression of the M2 marker CD163 which increased from 72 h to 168 h, while the M1 markers CD86 and HLA-DR were significantly downregulated. Overall, the described spheroid-on-chip model allows the evaluation of novel therapeutic strategies by mimicking and targeting the complex TME of PDAC.
Collapse
Affiliation(s)
- Alina Deipenbrock
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Ben Eric Wilmes
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | | | | | - Kyra Moustakas
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | | | | | - Nicole E Teusch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
2
|
Papayannakos CJ, Israr M, DeVoti JA, Lam F, Arazi A, Frank DK, Kamdar DP, Pereira LM, Seetharamu N, Steinberg BM, Bonagura VR. Oropharyngeal carcinomas induce circulating monocytes to express a TAM-like pro-tumor expression profile that suppresses T-cell proliferation. Front Immunol 2025; 16:1539780. [PMID: 40176808 PMCID: PMC11961958 DOI: 10.3389/fimmu.2025.1539780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/07/2025] [Indexed: 04/04/2025] Open
Abstract
Introduction Tumor-associated macrophages (TAMs) recruited from circulating monocytes drive tumor-growth and establish an immunosuppressive tumor microenvironment (TME). Initial events in transition from resting monocytes to TAMs are poorly understood. Here, we report that monocytes from oropharyngeal cancer (OPC) patients and control monocytes treated with OPC-conditioned media (CM) express a repertoire of pro-tumor mediators that is characteristic of TAMs. Methods Monocytes were stimulated with OPC cell line CM, analyzed by single-cell RNAseq. Results of select genes were confirmed by qPCR with monocytes and analyzed in OPC tumors vs. clinically normal tissue. OPC spheroids containing control monocytes and T-cells were established, TAM phenotype characterized by flow analysis and qPCR, and T-cell proliferation assessed by flow. Results OPC-conditioned media induced multiple pro-tumor genes including CXCL1, CXCL5, CXCL8, SPP1, IL1B, GPNMB, and FABP5. Patient monocytes had higher baseline levels or achieved higher levels after stimulation than control monocytes. A subset of patient monocytes had high baseline levels of CXCL9/-10/-11 expression that resisted downregulation in response to stimulation, a potential sign of a more favorable TME. CXCL9/-10/-11 expression in OPC tumor biopsies compared to clinically normal tissue correlated with patient outcome. Spheroid TAMs derived from control monocytes maintained the pro-tumor repertoire seen with monocytes stimulated by tumor line conditioned media. These TAMs suppress T-cell proliferation. Inhibition of COX-2 or IL1 signaling during differentiation into TAMs partially blocked the suppression of T-cell proliferation. Conclusion Targeting the early transition of monocytes into pro-tumor TAMs could be used to develop new therapies for OPC.
Collapse
Affiliation(s)
- Christopher J. Papayannakos
- Northwell, New Hyde Park, NY, United States
- Northwell, New Hyde Park, NY and Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Mohd Israr
- Northwell, New Hyde Park, NY, United States
- Northwell, New Hyde Park, NY and Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - James A. DeVoti
- Northwell, New Hyde Park, NY, United States
- Northwell, New Hyde Park, NY and Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Northwell, New Hyde Park, NY and Cohen Children’s Medical Center, Queens, NY, United States
| | - Fung Lam
- Northwell, New Hyde Park, NY, United States
- Northwell, New Hyde Park, NY and Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Arnon Arazi
- Northwell, New Hyde Park, NY, United States
- Northwell, New Hyde Park, NY and Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Douglas K. Frank
- Northwell, New Hyde Park, NY, United States
- Northwell, New Hyde Park, NY and Department of Otolaryngology, Jong Island Jewish Medical Center, New Hyde Park, NY, United States
| | - Dev P. Kamdar
- Northwell, New Hyde Park, NY, United States
- Northwell, New Hyde Park, NY and Department of Otolaryngology, Jong Island Jewish Medical Center, New Hyde Park, NY, United States
| | - Lucio M. Pereira
- Northwell, New Hyde Park, NY, United States
- Northwell, New Hyde Park, NY and Department of Otolaryngology, Jong Island Jewish Medical Center, New Hyde Park, NY, United States
| | - Nagashree Seetharamu
- Northwell, New Hyde Park, NY, United States
- Northwell, New Hyde Park, NY and Department of Otolaryngology, Jong Island Jewish Medical Center, New Hyde Park, NY, United States
- Northwell, New Hyde Park, NY and Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Bettie M. Steinberg
- Northwell, New Hyde Park, NY, United States
- Northwell, New Hyde Park, NY and Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Northwell, New Hyde Park, NY and Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Vincent R. Bonagura
- Northwell, New Hyde Park, NY, United States
- Northwell, New Hyde Park, NY and Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Northwell, New Hyde Park, NY and Cohen Children’s Medical Center, Queens, NY, United States
| |
Collapse
|
3
|
Bidan N, Dunsmore G, Ugrinic M, Bied M, Moreira M, Deloménie C, Ginhoux F, Blériot C, de la Fuente M, Mura S. Multicellular tumor spheroid model to study the multifaceted role of tumor-associated macrophages in PDAC. Drug Deliv Transl Res 2024; 14:2085-2099. [PMID: 38062286 DOI: 10.1007/s13346-023-01479-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 06/27/2024]
Abstract
While considerable efforts have been made to develop new therapies, progress in the treatment of pancreatic cancer has so far fallen short of patients' expectations. This is due in part to the lack of predictive in vitro models capable of accounting for the heterogeneity of this tumor and its low immunogenicity. To address this point, we have established and characterized a 3D spheroid model of pancreatic cancer composed of tumor cells, cancer-associated fibroblasts, and blood-derived monocytes. The fate of the latter has been followed from their recruitment into the tumor spheroid to their polarization into a tumor-associated macrophage (TAM)-like population, providing evidence for the formation of an immunosuppressive microenvironment.This 3D model well reproduced the multiple roles of TAMs and their influence on drug sensitivity and cell migration. Furthermore, we observed that lipid-based nanosystems consisting of sphingomyelin and vitamin E could affect the phenotype of macrophages, causing a reduction of characteristic markers of TAMs. Overall, this optimized triple coculture model gives a valuable tool that could find useful application for a more comprehensive understanding of TAM plasticity as well as for more predictive drug screening. This could increase the relevance of preclinical studies and help identify effective treatments.
Collapse
Affiliation(s)
- Nadège Bidan
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | | | - Martina Ugrinic
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Mathilde Bied
- Inserm U1015, Gustave Roussy, 94800, Villejuif, France
| | - Marco Moreira
- Inserm U1015, Gustave Roussy, 94800, Villejuif, France
| | - Claudine Deloménie
- Inserm US31, CNRS UAR3679, Ingénierie Et Plateformes Au Service de L'Innovation Thérapeutique (UMS-IPSIT), Université Paris-Saclay, 91400, Orsay, France
| | | | - Camille Blériot
- Inserm U1015, Gustave Roussy, 94800, Villejuif, France
- CNRS UMR8253, Institut Necker Enfants Malades, 75015, Paris, France
| | - Maria de la Fuente
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela SERGAS, 15706, Santiago de Compostela, Spain
- Biomedical Research Networking Center On Oncology (CIBERONC), 28029, Madrid, Spain
- DIVERSA Technologies SL, 15782, Santiago de Compostela, Spain
| | - Simona Mura
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| |
Collapse
|
4
|
Nielsen BS, Madsen NH, Larsen J, Skandorff I, Gad M, Holmstrøm K. Architectural organization and molecular profiling of 3D cancer heterospheroids and their application in drug testing. Front Oncol 2024; 14:1386097. [PMID: 39011470 PMCID: PMC11246882 DOI: 10.3389/fonc.2024.1386097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/31/2024] [Indexed: 07/17/2024] Open
Abstract
3D cancer cell cultures have enabled new opportunities for replacing compound testing in experimental animals. However, most solid tumors are composed of multiple cell types, including fibroblasts. In this study we developed multicellular tumor heterospheroids composed of cancer and fibroblasts cell lines. We developed heterospheroids by combining HT-29, MCF-7, PANC-1 or SW480 with 1BR.3.G fibroblasts, which we have previously reported support spheroid formation. We also tested fibroblast cell lines, MRC-5, GM00498 and HIF, but 1BR.3.G was found to best form heterospheroids with morphological similarity to in vivo tumor tissue. The architectural organization of heterospheroids was based on histological examination using immunohistochemistry. We found that HT-29 and MCF-7 cells developed spheroids with the cancer cells surrounding the fibroblasts, whereas PANC-1 cells interspersed with the fibroblasts and SW480 cells were surrounded by fibroblasts. The fibroblasts also expressed collagen-1 and FAP-α, and whole transcriptomic analysis (WTA) showed abundant ECM- and EMT-related expression in heterospheroids, thus reflecting a representative tumor-like microenvironment. The WTA showed that PANC-1 heterospheroids possess a strong EMT profile with abundant Vimentin and CDH2 expression. Drug testing was evaluated by measuring cytotoxicity of 5FU and cisplatin using cell viability and apoptosis assays. We found no major impact on the cytotoxicity when fibroblasts were added to the spheroids. We conclude that the cancer cell lines together with fibroblasts shape the architectural organization of heterospheroids to form tumor-like morphology, and we propose that the various 3D tumor structures can be used for drug testing directed against the cancer cells as well as the fibroblasts.
Collapse
Affiliation(s)
- Boye Schnack Nielsen
- Department of Cellular Engineering & Disease Modeling, Bioneer A/S, Hørsholm, Denmark
| | | | | | | | | | | |
Collapse
|
5
|
Nakamura H, Watanabe M, Takada K, Sato T, Hikage F, Umetsu A, Muramatsu J, Furuhashi M, Ohguro H. Modulation of Epithelial-Mesenchymal Transition Is a Possible Underlying Mechanism for Inducing Chemoresistance in MIA PaCa-2 Cells against Gemcitabine and Paclitaxel. Biomedicines 2024; 12:1011. [PMID: 38790973 PMCID: PMC11118094 DOI: 10.3390/biomedicines12051011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
To elucidate the currently unknown molecular mechanisms responsible for the similarity and difference during the acquirement of resistance against gemcitabine (GEM) and paclitaxel (PTX) in patients with pancreatic carcinoma, we examined two-dimensional (2D) and three-dimensional (3D) cultures of parent MIA PaCa-2 cells (MIA PaCa-2-PA) and their GEM resistance cell line (MIA PaCa-2-GR) and PTX resistance (MIA PaCa-2-PR). Using these cells, we examined 3D spheroid configurations and cellular metabolism, including mitochondrial and glycolytic functions, with a Seahorse bio-analyzer and RNA sequencing analysis. Compared to the MIA PaCa-2-PA, (1) the formation of the 3D spheroids of MIA PaCa-2-GR or -PR was much slower, and (2) their mitochondrial and glycolytic functions were greatly modulated in MIA PaCa-2-GR or -PR, and such metabolic changes were also different between their 2D and 3D culture conditions. RNA sequencing and bioinformatic analyses of the differentially expressed genes (DEGs) using an ingenuity pathway analysis (IPA) suggested that various modulatory factors related to epithelial -mesenchymal transition (EMT) including STAT3, GLI1, ZNF367, NKX3-2, ZIC2, IFIT2, HEY1 and FBLX, may be the possible upstream regulators and/or causal network master regulators responsible for the acquirement of drug resistance in MIA PaCa-2-GR and -PR. In addition, among the prominently altered DEGs (Log2 fold changes more than 6 or less than -6), FABP5, IQSEC3, and GASK1B were identified as unique genes associated with their antisense RNA or pseudogenes, and among these, FABP5 and GASK1B are known to function as modulators of cancerous EMT. Therefore, the observations reported herein suggest that modulations of cancerous EMT may be key molecular mechanisms that are responsible for inducing chemoresistance against GEM or PTX in MIA PaCa-2 cells.
Collapse
Affiliation(s)
- Hajime Nakamura
- Departments of Medical Oncology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (H.N.); (K.T.); (J.M.)
| | - Megumi Watanabe
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (A.U.)
| | - Kohichi Takada
- Departments of Medical Oncology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (H.N.); (K.T.); (J.M.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Fumihito Hikage
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (A.U.)
| | - Araya Umetsu
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (A.U.)
| | - Joji Muramatsu
- Departments of Medical Oncology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (H.N.); (K.T.); (J.M.)
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (M.F.)
| | - Hiroshi Ohguro
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (A.U.)
| |
Collapse
|
6
|
Suryavanshi P, Bodas D. Knockout cancer by nano-delivered immunotherapy using perfusion-aided scaffold-based tumor-on-a-chip. Nanotheranostics 2024; 8:380-400. [PMID: 38751938 PMCID: PMC11093718 DOI: 10.7150/ntno.87818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/20/2024] [Indexed: 05/18/2024] Open
Abstract
Cancer is a multifactorial disease produced by mutations in the oncogenes and tumor suppressor genes, which result in uncontrolled cell proliferation and resistance to cell death. Cancer progresses due to the escape of altered cells from immune monitoring, which is facilitated by the tumor's mutual interaction with its microenvironment. Understanding the mechanisms involved in immune surveillance evasion and the significance of the tumor microenvironment might thus aid in developing improved therapies. Although in vivo models are commonly utilized, they could be better for time, cost, and ethical concerns. As a result, it is critical to replicate an in vivo model and recreate the cellular and tissue-level functionalities. A 3D cell culture, which gives a 3D architecture similar to that found in vivo, is an appropriate model. Furthermore, numerous cell types can be cocultured, establishing cellular interactions between TME and tumor cells. Moreover, microfluidics perfusion can provide precision flow rates, thus simulating tissue/organ function. Immunotherapy can be used with the perfused 3D cell culture technique to help develop successful therapeutics. Immunotherapy employing nano delivery can target the spot and silence the responsible genes, ensuring treatment effectiveness while minimizing adverse effects. This study focuses on the importance of 3D cell culture in understanding the pathophysiology of 3D tumors and TME, the function of TME in drug resistance, tumor progression, and the development of advanced anticancer therapies for high-throughput drug screening.
Collapse
Affiliation(s)
- Pooja Suryavanshi
- Nanobioscience Group, Agharkar Research Institute, G.G. Agarkar Road, Pune 411 004 India
- Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007 India
| | - Dhananjay Bodas
- Nanobioscience Group, Agharkar Research Institute, G.G. Agarkar Road, Pune 411 004 India
- Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007 India
| |
Collapse
|
7
|
Singh K, Gautam PK. Macrophage infiltration in 3D cancer spheroids to recapitulate the TME and unveil interactions within cancer cells and macrophages to modulate chemotherapeutic drug efficacy. BMC Cancer 2023; 23:1201. [PMID: 38062442 PMCID: PMC10701966 DOI: 10.1186/s12885-023-11674-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Recapitulating the tumor microenvironment (TME) in vitro remains a major hurdle in cancer research. In recent years, there have been significant strides in this area, particularly with the emergence of 3D spheroids as a model system for drug screening and therapeutics development for solid tumors. However, incorporating macrophages into these spheroid cultures poses specific challenges due to the intricate interactions between macrophages and cancer cells. METHODS To address this issue, in this study, we established a reproducible healthy multicellular 3D spheroid culture with macrophage infiltrates in order to mimic the TME and modulate the drug's efficacy on cancer cells in the presence of macrophages. A 3D spheroid was established using the human cancer cell line CAL33 and THP1 cell derived M0 macrophages were used as a source of macrophages. Cellular parameters including tumour metabolism, health, and mitochondrial mass were analysed in order to establish ideal conditions. To modulate the interaction of cancer cells with macrophage the ROS, NO, and H2O2 levels, in addition to M1 and M2 macrophage phenotypic markers, were analyzed. To understand the crosstalk between cancer cells and macrophages for ECM degradation, HSP70, HIF1α and cysteine proteases were examined in spheroids using western blotting and qPCR. RESULTS The spheroids with macrophage infiltrates exhibited key features of solid tumors, including cellular heterogeneity, metabolic changes, nutrient gradients, ROS emission, and the interplay between HIF1α and HSP70 for upregulation of ECM degradading enzymes. Our results demonstrate that tumor cells exhibit a metabolic shift in the presence of macrophages. Additionally, we have observed a shift in the polarity of M0 macrophages towards tumor-associated macrophages (TAMs) in response to cancer cells in spheroids. Results also demonstrate the involvement of macrophages in regulating HIF-1α, HSP70, and ECM degradation cysteine proteases enzymes. CONCLUSIONS This study has significant implications for cancer therapy as it sheds light on the intricate interaction between tumor cells and their surrounding macrophages. Additionally, our 3D spheroid model can aid in drug screening and enhance the predictive accuracy of preclinical studies. The strength of our study lies in the comprehensive characterization of the multicellular 3D spheroid model, which closely mimics the TME.
Collapse
Affiliation(s)
- Khushwant Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Pramod K Gautam
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
8
|
Domingues M, Leite Pereira C, Sarmento B, Castro F. Mimicking 3D breast tumor-stromal interactions to screen novel cancer therapeutics. Eur J Pharm Sci 2023; 190:106560. [PMID: 37557927 DOI: 10.1016/j.ejps.2023.106560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/31/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Most of the 3D breast tumor models used in drug screening studies only comprise tumor cells, keeping out other essential cell players of the tumor microenvironment. Tumor-associated macrophages and fibroblasts are frequently correlated with tumor progression and therapy resistance, and targeting these cells at the tumor site has been appointed as a promising therapeutic strategy. However, the translation of new therapies to the clinic has been hampered by the absence of cellular models that more closely mimic the features of in vivo breast tumor microenvironment. Therefore, the development of innovative 3D models able to provide consistent and predictive responses about the in vivo efficacy of novel therapeutics is still an unmet preclinical need. Herein, we have established an in vitro 3D heterotypic spheroid model including MCF-7 breast tumor cells, human mammary fibroblasts and human macrophages. To establish this model, different cell densities have been combined and characterized through the evaluation of the spheroid size and metabolic activity, as well as histological and immunohistochemistry analysis of the 3D multicellular structures. The final optimized 3D model consisted in a multicellular spheroid seeded at the initial density of 5000 cells and cell ratio of 1:2:1 (MCF-7:monocytes:fibroblasts). Our model recapitulates several features of the breast tumor microenvironment, including the formation of a necrotic core, spatial organization, and extracellular matrix production. Further, it was validated as a platform for drug screening studies, using paclitaxel, a currently approved drug for breast cancer treatment, and Gefitinib, a chemotherapeutic approved for lung cancer and in preclinical evaluation for breast cancer. Generally, the impact on the cell viability of the 3D model was less evident than in 2D model, reinforcing the relevance of such complex 3D models in addressing novel treatment approaches. Overall, the use of a 3D heterotypic spheroid of breast cancer could be a valuable tool to predict the therapeutic effect of new treatments for breast cancer patients, by recapitulating key features of the breast cancer microenvironment.
Collapse
Affiliation(s)
- Mariana Domingues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, Rua Doutor Roberto Frias, Porto 4200-465, Portugal
| | - Catarina Leite Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, Gandra 4585-116, Portugal.
| | - Flávia Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal.
| |
Collapse
|
9
|
Mhaidly N, Journe F, Najem A, Stock L, Trelcat A, Dequanter D, Saussez S, Descamps G. Macrophage Profiling in Head and Neck Cancer to Improve Patient Prognosis and Assessment of Cancer Cell-Macrophage Interactions Using Three-Dimensional Coculture Models. Int J Mol Sci 2023; 24:12813. [PMID: 37628994 PMCID: PMC10454490 DOI: 10.3390/ijms241612813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Tumor-associated macrophages are key components of the tumor microenvironment and play important roles in the progression of head and neck cancer, leading to the development of effective strategies targeting immune cells in tumors. Our study demonstrated the prognostic potential of a new scoring system (Macroscore) based on the combination of the ratio and the sum of the high and low densities of M1 (CD80+) and M2 (CD163+) macrophages in a series of head and neck cancer patients, including a training population (n = 54) and a validation population (n = 19). Interestingly, the Macroscore outperformed TNM criteria and p16 status, showing a significant association with poor patient prognosis, and demonstrated significant predictive value for overall survival. Additionally, 3D coculture spheroids were established to analyze the crosstalk between cancer cells and monocytes/macrophages. Our data revealed that cancer cells can induce monocyte differentiation into protumoral M2 macrophages, creating an immunosuppressive microenvironment. This coculture also induced the production of immunosuppressive cytokines, such as IL10 and IL8, known to promote M2 polarization. Finally, we validated the ability of the macrophage subpopulations to induce apoptosis (M1) or support proliferation (M2) of cancer cells. Overall, our research highlights the potential of the Macroscore as a valuable prognostic biomarker to enhance the clinical management of patients and underscores the relevance of a spheroid model in gaining a better understanding of the mechanisms underlying cancer cell-macrophage interactions.
Collapse
Affiliation(s)
- Nour Mhaidly
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars, 8, 7000 Mons, Belgium; (N.M.); (F.J.); (L.S.); (A.T.); (S.S.)
| | - Fabrice Journe
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars, 8, 7000 Mons, Belgium; (N.M.); (F.J.); (L.S.); (A.T.); (S.S.)
- Laboratory of Clinical and Experimental Oncology (LOCE), Institute Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium;
| | - Ahmad Najem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institute Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium;
| | - Louis Stock
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars, 8, 7000 Mons, Belgium; (N.M.); (F.J.); (L.S.); (A.T.); (S.S.)
| | - Anne Trelcat
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars, 8, 7000 Mons, Belgium; (N.M.); (F.J.); (L.S.); (A.T.); (S.S.)
| | - Didier Dequanter
- Department of Otolaryngology and Head and Neck Surgery, CHU Saint-Pierre, 1000 Brussels, Belgium;
| | - Sven Saussez
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars, 8, 7000 Mons, Belgium; (N.M.); (F.J.); (L.S.); (A.T.); (S.S.)
- Department of Otolaryngology and Head and Neck Surgery, CHU Saint-Pierre, 1000 Brussels, Belgium;
| | - Géraldine Descamps
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars, 8, 7000 Mons, Belgium; (N.M.); (F.J.); (L.S.); (A.T.); (S.S.)
| |
Collapse
|
10
|
Lim GH, An JH, Park SM, Youn GH, Oh YI, Seo KW, Youn HY. Macrophage induces anti-cancer drug resistance in canine mammary gland tumor spheroid. Sci Rep 2023; 13:10394. [PMID: 37369757 DOI: 10.1038/s41598-023-37311-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023] Open
Abstract
Tumor-associated macrophages (TAMs) play an important role in the tumor microenvironment by producing cytokines and growth factors. Furthermore, TAMs play multifunctional roles in tumor progression, immune regulation, metastasis, angiogenesis, and chemoresistance. Hypoxia in the tumor microenvironment induces tumor-supporting transformation of TAMs, which enhances tumor malignancy through developing anti-cancer resistance, for example. In this study, a hybrid spheroid model of canine mammary gland tumor (MGT) cell lines (CIPp and CIPm) and canine macrophages (DH82) was established. The effects of hypoxia induced by the spheroid culture system on the anti-cancer drug resistance of canine MGT cells were investigated. A hybrid spheroid was created using an ultralow-adhesion plate. The interactions between canine MGT cells and DH82 were investigated using a co-culture method. When co-cultured with DH82, cell viability and expression levels of tumor growth factors and multi-drug resistance genes were increased in canine MGT cells under doxorubicin. Additionally, doxorubicin-induced apoptosis and G2/M cell cycle arrest were attenuated in canine MGT cells co-cultured with DH82. In conclusion, the hybrid spheroid model established in this study reflects the hypoxic TME, allowing DH82 to induce anti-cancer drug resistance in canine MGT cells.
Collapse
Affiliation(s)
- Ga-Hyun Lim
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ju-Hyun An
- Department of Veterinary Emergency and Critical Care Medicine, Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon-si, Republic of Korea
| | - Su-Min Park
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ga-Hee Youn
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ye-In Oh
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoung-Won Seo
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
11
|
Rodriguez-Perdigon M, Haeni L, Rothen-Rutishauser B, Rüegg C. Dual CSF1R inhibition and CD40 activation demonstrates anti-tumor activity in a 3D macrophage- HER2 + breast cancer spheroid model. Front Bioeng Biotechnol 2023; 11:1159819. [PMID: 37346794 PMCID: PMC10281737 DOI: 10.3389/fbioe.2023.1159819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
The complex interaction between tumor-associated macrophages (TAMs) and tumor cells through soluble factors provides essential cues for breast cancer progression. TAMs-targeted therapies have shown promising clinical therapeutical potential against cancer progression. The molecular mechanisms underlying the response to TAMs-targeted therapies depends on complex dynamics of immune cross-talk and its understanding is still incomplete. In vitro models are helpful to decipher complex responses to combined immunotherapies. In this study, we established and characterized a 3D human macrophage-ER+ PR+ HER2+ breast cancer model, referred to as macrophage-tumor spheroid (MTS). Macrophages integrated within the MTS had a mixed M2/M1 phenotype, abrogated the anti-proliferative effect of trastuzumab on tumor cells, and responded to IFNγ with increased M1-like polarization. The targeted treatment of MTS with a combined CSF1R kinase inhibitor and an activating anti-CD40 antibody increased M2 over M1 phenotype (CD163+/CD86+ and CD206+/CD86+ ratio) in time, abrogated G2/M cell cycle phase transition of cancer cells, promoted the secretion of TNF-α and reduced cancer cell viability. In comparison, combined treatment in a 2D macrophage-cancer cell co-culture model reduced M2 over M1 phenotype and decreased cancer cell viability. Our work shows that this MTS model is responsive to TAMs-targeted therapies, and may be used to study the response of ER+ PR+ HER2+ breast cancer lines to novel TAM-targeting therapies.
Collapse
Affiliation(s)
- Manuel Rodriguez-Perdigon
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Laetitia Haeni
- Adolphe Merkle Institute, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Barbara Rothen-Rutishauser
- Adolphe Merkle Institute, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Curzio Rüegg
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
12
|
Nascimento C, Castro F, Domingues M, Lage A, Alves É, de Oliveira R, de Melo C, Eduardo Calzavara-Silva C, Sarmento B. Reprogramming of tumor-associated macrophages by polyaniline-coated iron oxide nanoparticles applied to treatment of breast cancer. Int J Pharm 2023; 636:122866. [PMID: 36934882 DOI: 10.1016/j.ijpharm.2023.122866] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/03/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Breast cancer is the most commonly diagnosed type of cancer among the female population worldwide. It is a disease with a high incidence and geographic distribution that negatively impacts global public health and deleteriously affect the quality of life of cancer patients. Among the new approaches, cancer immunotherapy is the most promising trend in oncology by stimulating the host's own immune system to efficiently destroy cancer cells. Recent evidence has indicated that iron oxide nanoparticles can promote the reprograming of M2 into M1 macrophages with anti-tumor effects in the tumor microenvironment. Thus, the aim of the present work was to evaluate the ability of polyaniline-coated maghemite (Pani/γ-Fe2O3) nanoparticles to modulate human macrophages in 2D monolayers and 3D multicellular breast cancer models. It was observed that Pani/γ-Fe2O3 NPs re-educated IL-10-stimulated macrophages towards a pro-inflammatory profile, decreasing the proportion of CD163+ and increasing the CD86+ proportion in 2D models. NPs were successfully taken-up by macrophages presented in the 3D model and were also able to induce an increasing in their CD86+ proportion in triple MCTs model. Overall, our findings open new perspectives on the use of Pani/γ-Fe2O3 NPs as an immunomodulatory therapy for macrophage reprogramming towards an anti-tumor M1 phenotype, providing a new tool for breast cancer immunotherapies.
Collapse
Affiliation(s)
- Camila Nascimento
- Grupo de Pesquisa em Imunologia Celular e Molecular, Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715 - Barro Preto, Belo Horizonte, MG 30190-002, Brazil
| | - Flávia Castro
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Mariana Domingues
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, Rua Doutor Roberto Frias, 4200-465 Porto, Portugal
| | - Anna Lage
- Grupo de Pesquisa em Imunologia Celular e Molecular, Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715 - Barro Preto, Belo Horizonte, MG 30190-002, Brazil
| | - Érica Alves
- Grupo de Pesquisa em Imunologia Celular e Molecular, Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715 - Barro Preto, Belo Horizonte, MG 30190-002, Brazil
| | - Rodrigo de Oliveira
- Grupo de Pesquisa em Imunologia Celular e Molecular, Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715 - Barro Preto, Belo Horizonte, MG 30190-002, Brazil
| | - Celso de Melo
- Grupo de Polímeros Não-Convencionais, Departamento de Física, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE 50670-901, Brazil
| | - Carlos Eduardo Calzavara-Silva
- Grupo de Pesquisa em Imunologia Celular e Molecular, Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715 - Barro Preto, Belo Horizonte, MG 30190-002, Brazil
| | - Bruno Sarmento
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; CESPU - IUCS, Rua Central da Gandra, 137, 4585-116 Gandra, Portugal.
| |
Collapse
|
13
|
Barreto-Duran E, Szczepański A, Gałuszka-Bulaga A, Surmiak M, Siedlar M, Sanak M, Rajfur Z, Milewska A, Lenart M, Pyrć K. The interplay between the airway epithelium and tissue macrophages during the SARS-CoV-2 infection. Front Immunol 2022; 13:991991. [PMID: 36275746 PMCID: PMC9582145 DOI: 10.3389/fimmu.2022.991991] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
The first line of antiviral immune response in the lungs is secured by the innate immunity. Several cell types take part in this process, but airway macrophages (AMs) are among the most relevant ones. The AMs can phagocyte infected cells and activate the immune response through antigen presentation and cytokine release. However, the precise role of macrophages in the course of SARS-CoV-2 infection is still largely unknown. In this study, we aimed to evaluate the role of AMs during the SARS-CoV-2 infection using a co-culture of fully differentiated primary human airway epithelium (HAE) and human monocyte-derived macrophages (hMDMs). Our results confirmed abortive SARS-CoV-2 infection in hMDMs, and their inability to transfer the virus to epithelial cells. However, we demonstrated a striking delay in viral replication in the HAEs when hMDMs were added apically after the epithelial infection, but not when added before the inoculation or on the basolateral side of the culture. Moreover, SARS-CoV-2 inhibition by hMDMs seems to be driven by cell-to-cell contact and not by cytokine production. Together, our results show, for the first time, that the recruitment of macrophages may play an important role during the SARS-CoV-2 infection, limiting the virus replication and its spread.
Collapse
Affiliation(s)
- Emilia Barreto-Duran
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Artur Szczepański
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Adrianna Gałuszka-Bulaga
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Surmiak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Zenon Rajfur
- Astronomy and Applied Computer Sciences, Institute of Physics, Jagiellonian University, Krakow, Poland
| | - Aleksandra Milewska
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marzena Lenart
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- *Correspondence: Krzysztof Pyrć, ; Marzena Lenart,
| | - Krzysztof Pyrć
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- *Correspondence: Krzysztof Pyrć, ; Marzena Lenart,
| |
Collapse
|
14
|
Biomimetic Targeted Theranostic Nanoparticles for Breast Cancer Treatment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196473. [PMID: 36235009 PMCID: PMC9571674 DOI: 10.3390/molecules27196473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
The development of biomimetic drug delivery systems for biomedical applications has attracted significant research attention. As the use of cell membrane as a surface coating has shown to be a promising platform for several disease treatments. Cell-membrane-coated nanoparticles exhibit enhanced immunocompatibility and prolonged circulation time. Herein, human red blood cell (RBC) membrane-cloaked nanoparticles with enhanced targeting functionality were designed as a targeted nanotheranostic against cancer. Naturally, derived human RBC membrane modified with targeting ligands coated onto polymeric nanoparticle cores containing both chemotherapy and imaging agent. Using epithelial cell adhesion molecule (EpCAM)-positive MCF-7 breast cancer cells as a disease model, the nature-inspired targeted theranostic human red blood cell membrane-coated polymeric nanoparticles (TT-RBC-NPs) platform was capable of not only specifically binding to targeted cancer cells, effectively delivering doxorubicin (DOX), but also visualizing the targeted cancer cells. The TT-RBC-NPs achieved an extended-release profile, with the majority of the drug release occurring within 5 days. The TT-RBC-NPs enabled enhanced cytotoxic efficacy against EpCAM positive MCF-7 breast cancer over the non-targeted NPs. Additionally, fluorescence images of the targeted cancer cells incubated with the TT-RBC-NPs visually indicated the increased cellular uptake of TT-RBC-NPs inside the breast cancer cells. Taken together, this TT-RBC-NP platform sets the foundation for the next-generation stealth theranostic platforms for systemic cargo delivery for treatment and diagnostic of cancer.
Collapse
|
15
|
In vitro 2D and 3D cancer models to evaluate compounds that modulate macrophage polarization. Cell Immunol 2022; 378:104574. [DOI: 10.1016/j.cellimm.2022.104574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/09/2022] [Accepted: 06/19/2022] [Indexed: 11/18/2022]
|