1
|
Yang T, Xue L, Luo Z, Lin J, Zhang X, Xiao F, Liu Y, Li D, Lin X. Sensitivity-enhanced hydrogel digital RT-LAMP with in situ enrichment and interfacial reaction for norovirus quantification in food and water. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137325. [PMID: 39864200 DOI: 10.1016/j.jhazmat.2025.137325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Low levels of human norovirus (HuNoV) in food and environment present challenges for nucleic acid detection. This study reported an evaporation-enhanced hydrogel digital reverse transcription loop-mediated isothermal amplification (HD RT-LAMP) with interfacial enzymatic reaction for sensitive HuNoV quantification in food and water. By drying samples on a chamber array chip, HuNoV particles were enriched in situ. The interfacial amplification of nucleic acid at the hydrogel-chip interface was triggered after coating HD RT-LAMP system. Nanoconfined spaces in hydrogels provided a simple and rapid "digital format" to quantify single virus within 15 min. Through in situ evaporation for enrichment, the sensitivity level was increased by 20 times. The universality of the sensitivity-enhanced assay was also verified using other bacteria and virus. Furthermore, a deep learning model and smartphone app were developed for automatic amplicon analysis. Multiple actual samples, including 3 lake waters, strawberry, tap water and drinking water, were in situ enriched and detected for norovirus quantification using the chamber arrays. Therefore, the sensitivity-enhanced HD RT-LAMP is an efficient assay for testing biological hazards in food safety monitoring and environmental surveillance.
Collapse
Affiliation(s)
- Tao Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Liang Xue
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Big Data Technologies for Food Microbiological Safety, State Administration for Market Regulation, Guangzhou 510070, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Xinyang Zhang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Fangbin Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yuanjie Liu
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Dong Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Gao J, Zhang Z, Xue L, Li Y, Cheng T, Meng L, Li Y, Cai W, Hong X, Zhang J, Wang J, Chen M, Ye Q, Ding Y, Wu Q. GII.17[P17] and GII.8[P8] noroviruses showed different RdRp activities associated with their epidemic characteristics. J Med Virol 2023; 95:e28216. [PMID: 36254681 DOI: 10.1002/jmv.28216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 01/11/2023]
Abstract
Norovirus is the primary foodborne pathogenic agent causing viral acute gastroenteritis. It possesses broad genetic diversity and the prevalence of different genotypes varies substantially. However, the differences in RNA-dependent RNA polymerase (RdRp) activity among different genotypes of noroviruses remain unclear. In this study, the molecular mechanism of RdRp activity difference between the epidemic strain GII.17[P17] and the non-epidemic strain GII.8[P8] was characterized. By evaluating the evolutionary history of RdRp sequences with Markov Chain Monte Carlo method, the evolution rate of GII.17[P17] variants was higher than that of GII.8[P8] variants (1.22 × 10-3 nucleotide substitutions/site/year to 9.31 × 10-4 nucleotide substitutions/site/year, respectively). The enzyme catalytic reaction demonstrated that the Vmax value of GII.17[P17] RdRp was 2.5 times than that of GII.8[P8] RdRp. And the Km of GII.17[P17] and GII.8[P8] RdRp were 0.01 and 0.15 mmol/L, respectively. Then, GII.8[P8] RdRp fragment mutants (A-F) were designed, among which GII.8[P8]-A/B containing the conserved motif G/F were found to have significant effects on improving RdRp activity. The Km values of GII.8[P8]-A/B reached 0.07 and 0.06 mmol/L, respectively. And their Vmax values were 1.34 times than that of GII.8[P8] RdRp. In summary, our results suggested that RdRp activities were correlated with their epidemic characteristics. These findings will ultimately provide a better understanding in replication mechanism of noroviruses and development of antiviral drugs.
Collapse
Affiliation(s)
- Junshan Gao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Zilei Zhang
- Inspection and Quarantine Technology Communication Department, Shanghai Customs College, Shanghai, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Tong Cheng
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Luobing Meng
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Yijing Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Weicheng Cai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Xiaojing Hong
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Yu Ding
- Department of Food Science & Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| |
Collapse
|
3
|
Villabruna N, Izquierdo-Lara RW, Schapendonk CME, de Bruin E, Chandler F, Thao TTN, Westerhuis BM, van Beek J, Sigfrid L, Giaquinto C, Goossens H, Bielicki JA, Kohns Vasconcelos M, Fraaij PLA, Koopmans MPG, de Graaf M. Profiling of humoral immune responses to norovirus in children across Europe. Sci Rep 2022; 12:14275. [PMID: 35995986 PMCID: PMC9395339 DOI: 10.1038/s41598-022-18383-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Norovirus is a leading cause of epidemic acute gastroenteritis. More than 30 genotypes circulate in humans, some are common, and others are only sporadically detected. Here, we investigated whether serology can be used to determine which genotypes infect children. We established a multiplex protein microarray with structural and non-structural norovirus antigens that allowed simultaneous antibody testing against 30 human GI and GII genotypes. Antibody responses of sera obtained from 287 children aged < 1 month to 5.5 years were profiled. Most specific IgG and IgA responses were directed against the GII.2, GII.3, GII.4, and GII.6 capsid genotypes. While we detected antibody responses against rare genotypes, we found no evidence for wide circulation. We also detected genotype-specific antibodies against the non-structural proteins p48 and p22 in sera of older children. In this study, we show the age-dependent antibody responses to a broad range of norovirus capsid and polymerase genotypes, which will aid in the development of vaccines.
Collapse
Affiliation(s)
- Nele Villabruna
- Department of Viroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Ray W Izquierdo-Lara
- Department of Viroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | | | - Erwin de Bruin
- Department of Viroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Felicity Chandler
- Department of Viroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Tran Thi Nhu Thao
- Institute of Virology and Immunology (IVI), Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Brenda M Westerhuis
- Department of Viroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Janko van Beek
- Department of Viroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Louise Sigfrid
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Carlo Giaquinto
- Division of Paediatric Infectious Diseases, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Julia A Bielicki
- Paediatric Infectious Disease Research Group, Institute for Infection and Immunity, St George's University of London, London, UK.,Department of Infectious Diseases and Vaccinology, University of Basel Children's Hospital (UKBB), Basel, Switzerland
| | - Malte Kohns Vasconcelos
- Paediatric Infectious Disease Research Group, Institute for Infection and Immunity, St George's University of London, London, UK.,Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Marion P G Koopmans
- Department of Viroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Miranda de Graaf
- Department of Viroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|