1
|
Zhang Y, Shen C, Zhu X, Leow CY, Ji M, Xu Z. Helminth-derived molecules: pathogenic and pharmacopeial roles. J Biomed Res 2024; 38:1-22. [PMID: 39314046 DOI: 10.7555/jbr.38.20240177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Parasitic helminths, taxonomically comprising trematodes, cestodes, and nematodes, are multicellular invertebrates widely disseminated in nature and have afflicted people continuously for a long time. Helminths play potent roles in the host through generating a variety of novel molecules, including some excretory/secretory products and others that are involved in intracellular material exchange and information transfer as well as the initiation or stimulation of immune and metabolic activation. The helminth-derived molecules have developed powerful and diverse immunosuppressive effects to achieve immune evasion for parasite survival and establish chronic infections. However, they also improve autoimmune and allergic inflammatory responses and promote metabolic homeostasis by promoting metabolic reprogramming of various immune functions, and then inducing alternatively activated macrophages, T helper 2 cells, and regulatory T cells-mediated immune responses. Therefore, a deeper exploration of the immunopathogenic mechanism and immune regulatory mechanisms of helminth-derived molecules exerted in the host is crucial for understanding host-helminth interactions as well as the development of therapeutic drugs for infectious or non-infectious diseases. In this review, we focus on the properties of helminth-derived molecules to give an overview of the most recent scientific knowledge about their pathogenic and pharmacopeial roles in immune-metabolic homeostasis.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chunxiang Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xinyi Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Minjun Ji
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhipeng Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
2
|
Cai N, Zhan X, Chen Y, Xue J, Chen C, Li Y, Tian Y, Yan X. Surface Sialic Acid Detection of Small Extracellular Vesicles at the Single-Particle Level by Nano-Flow Cytometry. Anal Chem 2024; 96:12718-12728. [PMID: 39047233 DOI: 10.1021/acs.analchem.4c01763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Glycans, particularly sialic acids (SAs), play crucial roles in diverse biological processes. Despite their significance, analyzing specific glycans, such as sialic acids, on individual small extracellular vesicles (sEVs) has remained challenging due to the limited glycan capacity and substantial heterogeneity of sEVs. To tackle this issue, we introduce a chemical modification method of surface SAs on sEVs named PALEV-nFCM, which involves periodate oxidation and aniline-catalyzed oxime ligation (PAL), in conjunction with single-particle analysis using a laboratory-built nano-flow cytometer (nFCM). The specificity of the PALEV labeling method was validated using SA-decorated liposomes, enzymatic removal of terminal SA residues, lectin preblocking, and cellular treatment with an endogenous sialyltransferase inhibitor. Comprehensive mapping of SA distributions was conducted for sEVs derived from different sources, including conditioned cell culture medium (CCCM) of various cell lines, human saliva, and human red blood cells (RBCs). Notably, treatment with the calcium ionophore substantially increases the population of SA-positive RBC sEVs and enhances the SA content on individual RBC sEVs as well. nFCM provides a sensitive and versatile platform for mapping SAs of individual sEVs, which could significantly contribute to resolving the heterogeneity of sEVs and advancing the understanding of their glycosignature.
Collapse
Affiliation(s)
- Niangui Cai
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Xiaozhen Zhan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Yan Chen
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Junwei Xue
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Chen Chen
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Yurou Li
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Ye Tian
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Xiaomei Yan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| |
Collapse
|
3
|
Rojas A, Regev-Rudzki N. Biogenesis of extracellular vesicles from the pathogen perspective: Transkingdom strategies for delivering messages. Curr Opin Cell Biol 2024; 88:102366. [PMID: 38705049 DOI: 10.1016/j.ceb.2024.102366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
EVs are nanoparticles enclosing proteins, nucleic acids and lipids released by cells and are essential for their metabolism and useful for intercellular communication. The importance of EVs has been highlighted by their use as biomarkers or as vaccine antigens. The release of vesicles is exploited by a wide range of organisms: from unicellular bacteria or protozoa to multicellular prokaryotes like fungi, helminths and arthropods. The mechanisms elucidated to date in each biological group are presented, as well as a discussion of interesting directions for future EV studies.
Collapse
Affiliation(s)
- Alicia Rojas
- Laboratory of Helminthology, Faculty of Microbiology, University of Costa Rica, San José, 11501-2060, Costa Rica; Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, 11501-2060, Costa Rica.
| | - Neta Regev-Rudzki
- Department of Biochemical Sciences, Weizmann Institute of Sciences, Rehovot, Israel
| |
Collapse
|
4
|
Aloi N, Drago G, Ruggieri S, Cibella F, Colombo P, Longo V. Extracellular Vesicles and Immunity: At the Crossroads of Cell Communication. Int J Mol Sci 2024; 25:1205. [PMID: 38256278 PMCID: PMC10816988 DOI: 10.3390/ijms25021205] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Extracellular vesicles (EVs), comprising exosomes and microvesicles, are small membranous structures secreted by nearly all cell types. They have emerged as crucial mediators in intercellular communication, playing pivotal roles in diverse physiological and pathological processes, notably within the realm of immunity. These roles go beyond mere cellular interactions, as extracellular vesicles stand as versatile and dynamic components of immune regulation, impacting both innate and adaptive immunity. Their multifaceted involvement includes immune cell activation, antigen presentation, and immunomodulation, emphasising their significance in maintaining immune homeostasis and contributing to the pathogenesis of immune-related disorders. Extracellular vesicles participate in immunomodulation by delivering a wide array of bioactive molecules, including proteins, lipids, and nucleic acids, thereby influencing gene expression in target cells. This manuscript presents a comprehensive review that encompasses in vitro and in vivo studies aimed at elucidating the mechanisms through which EVs modulate human immunity. Understanding the intricate interplay between extracellular vesicles and immunity is imperative for unveiling novel therapeutic targets and diagnostic tools applicable to various immunological disorders, including autoimmune diseases, infectious diseases, and cancer. Furthermore, recognising the potential of EVs as versatile drug delivery vehicles holds significant promise for the future of immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (N.A.); (G.D.); (S.R.); (F.C.); (V.L.)
| | | |
Collapse
|
5
|
Kuipers ME, Nguyen DL, van Diepen A, Mes L, Bos E, Koning RI, Nolte-’t Hoen ENM, Smits HH, Hokke CH. Life stage-specific glycosylation of extracellular vesicles from Schistosoma mansoni schistosomula and adult worms drives differential interaction with C-type lectin receptors DC-SIGN and MGL. Front Mol Biosci 2023; 10:1125438. [PMID: 37006612 PMCID: PMC10050886 DOI: 10.3389/fmolb.2023.1125438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/15/2023] [Indexed: 03/17/2023] Open
Abstract
Schistosomes can survive in mammalian hosts for many years, and this is facilitated by released parasite products that modulate the host’s immune system. Many of these products are glycosylated and interact with host cells via C-type lectin receptors (CLRs). We previously reported on specific fucose-containing glycans present on extracellular vesicles (EVs) released by schistosomula, the early juvenile life stage of the schistosome, and the interaction of these EVs with the C-type lectin receptor Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN or CD209). EVs are membrane vesicles with a size range between 30–1,000 nm that play a role in intercellular and interspecies communication. Here, we studied the glycosylation of EVs released by the adult schistosome worms. Mass spectrometric analysis showed that GalNAcβ1–4GlcNAc (LacDiNAc or LDN) containing N-glycans were the dominant glycan type present on adult worm EVs. Using glycan-specific antibodies, we confirmed that EVs from adult worms were predominantly associated with LDN, while schistosomula EVs displayed a highly fucosylated glycan profile. In contrast to schistosomula EV that bind to DC-SIGN, adult worm EVs are recognized by macrophage galactose-type lectin (MGL or CD301), and not by DC-SIGN, on CLR expressing cell lines. The different glycosylation profiles of adult worm- and schistosomula-derived EVs match with the characteristic glycan profiles of the corresponding life stages and support their distinct roles in schistosome life-stage specific interactions with the host.
Collapse
Affiliation(s)
- Marije E. Kuipers
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - D. Linh Nguyen
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Lynn Mes
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Erik Bos
- Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden, Netherlands
| | - Roman I. Koning
- Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden, Netherlands
| | - Esther N. M. Nolte-’t Hoen
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Hermelijn H. Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Cornelis H. Hokke
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Cornelis H. Hokke,
| |
Collapse
|
6
|
Abou-El-Naga IF. Emerging roles for extracellular vesicles in Schistosoma infection. Acta Trop 2022; 232:106467. [PMID: 35427535 DOI: 10.1016/j.actatropica.2022.106467] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/05/2022] [Accepted: 04/11/2022] [Indexed: 11/01/2022]
Abstract
The co-evolution of Schistosoma and its host necessitates the use of extracellular vesicles (EVs) generated by different lifecycle stages to manipulate the host immune system to achieve a delicate balance between the survival of the parasite and the limited pathology of the host. EVs are phospholipid bilayer membrane-enclosed vesicles capable of transferring a complex mixture of proteins, lipids, and genetic materials to the host. They are nano-scale-sized vesicles involved in cellular communication. In this review, the author summarized the proteins involved in the biogenesis of schistosome-derived EVs and their cargo load. miRNAs are one cargo molecule that can underpin EVs functions and significantly affect parasite/host interactions and immune modulation. They skew macrophage polarization towards the M1 phenotype and downregulate Th2 immunity. Schistosoma can evade the host immune system's harmful effects by utilizing this strategy. In order to compromise the protective effect of Th2, EVs upregulate T regulatory cells and activate eosinophils, which contribute to granuloma formation. Schistosomal EVs also affect fibrosis by acting on non-immune cells such as hepatic stellate cells. These vesicles drew attention to translational applications in diagnosis, immunotherapy, and potential vaccines. A deep understanding of the interaction of schistosome-derived EVs with host cells will significantly increase our knowledge about the dynamics between the host and the worm that may aid in controlling this debilitating disease.
Collapse
|
7
|
Dagenais M, Gerlach JQ, Geary TG, Long T. Sugar Coating: Utilisation of Host Serum Sialoglycoproteins by Schistosoma mansoni as a Potential Immune Evasion Mechanism. Pathogens 2022; 11:pathogens11040426. [PMID: 35456101 PMCID: PMC9030049 DOI: 10.3390/pathogens11040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
Parasitic helminths resort to various mechanisms to evade and modulate their host’s immune response, several of which have been described for Schistosoma mansoni. We recently reported the presence of sialic acid residues on the surface of adult S. mansoni extracellular vesicles (EVs). We now report that these sialylated molecules are mammalian serum proteins. In addition, our data suggest that most sialylated EV-associated proteins do not elicit a humoral response upon injection into mice, or in sera obtained from infected animals. Sialic acids frequently terminate glycans on the surface of vertebrate cells, where they serve important functions in physiological processes such as cell adhesion and signalling. Interestingly, several pathogens have evolved ways to mimic or utilise host sialic acid beneficially by coating their own proteins, thereby facilitating cell invasion and providing protection from host immune effectors. Together, our results indicate that S. mansoni EVs are coated with host glycoproteins, which may contribute to immune evasion by masking antigenic sites, protecting EVs from removal from serum and aiding in cell adhesion and entry to exert their functions.
Collapse
Affiliation(s)
- Maude Dagenais
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (T.G.G.); (T.L.)
- Correspondence:
| | - Jared Q. Gerlach
- Advanced Glycoscience Research Cluster, National University of Ireland-Galway, H91 TK33 Galway, Ireland;
| | - Timothy G. Geary
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (T.G.G.); (T.L.)
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University-Belfast, Belfast BT9 5DL, UK
| | - Thavy Long
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (T.G.G.); (T.L.)
| |
Collapse
|
8
|
Ben Ami Pilo H, Khan Khilji S, Lühle J, Biskup K, Levy Gal B, Rosenhek Goldian I, Alfandari D, Revach O, Kiper E, Morandi MI, Rotkopf R, Porat Z, Blanchard V, Seeberger PH, Regev‐Rudzki N, Moscovitz O. Sialylated N-glycans mediate monocyte uptake of extracellular vesicles secreted from Plasmodium falciparum-infected red blood cells. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e33. [PMID: 38938665 PMCID: PMC11080922 DOI: 10.1002/jex2.33] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 06/29/2024]
Abstract
Glycoconjugates on extracellular vesicles (EVs) play a vital role in internalization and mediate interaction as well as regulation of the host immune system by viruses, bacteria, and parasites. During their intraerythrocytic life-cycle stages, malaria parasites, Plasmodium falciparum (Pf) mediate the secretion of EVs by infected red blood cells (RBCs) that carry a diverse range of parasitic and host-derived molecules. These molecules facilitate parasite-parasite and parasite-host interactions to ensure parasite survival. To date, the number of identified Pf genes associated with glycan synthesis and the repertoire of expressed glycoconjugates is relatively low. Moreover, the role of Pf glycans in pathogenesis is mostly unclear and poorly understood. As a result, the expression of glycoconjugates on Pf-derived EVs or their involvement in the parasite life-cycle has yet to be reported. Herein, we show that EVs secreted by Pf-infected RBCs carry significantly higher sialylated complex N-glycans than EVs derived from healthy RBCs. Furthermore, we reveal that EV uptake by host monocytes depends on N-glycoproteins and demonstrate that terminal sialic acid on the N-glycans is essential for uptake by human monocytes. Our results provide the first evidence that Pf exploits host sialylated N-glycans to mediate EV uptake by the human immune system cells.
Collapse
Affiliation(s)
- Hila Ben Ami Pilo
- Faculty of BiochemistryDepartment of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Sana Khan Khilji
- Department of Biomolecular SystemsMax‐Planck‐Institute of Colloids and InterfacesBerlinGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinBerlinGermany
| | - Jost Lühle
- Department of Biomolecular SystemsMax‐Planck‐Institute of Colloids and InterfacesBerlinGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinBerlinGermany
| | - Karina Biskup
- Institute of Laboratory MedicineClinical Chemistry and PathobiochemistryCharite University Medicine BerlinBerlinGermany
| | - Bar Levy Gal
- Flow Cytometry Unit, Life Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | | | - Daniel Alfandari
- Faculty of BiochemistryDepartment of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Or‐Yam Revach
- Faculty of BiochemistryDepartment of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Edo Kiper
- Faculty of BiochemistryDepartment of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Mattia I. Morandi
- Faculty of BiochemistryDepartment of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Ron Rotkopf
- Bioinformatics Unit, Life Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | - Véronique Blanchard
- Institute of Laboratory MedicineClinical Chemistry and PathobiochemistryCharite University Medicine BerlinBerlinGermany
| | - Peter H. Seeberger
- Department of Biomolecular SystemsMax‐Planck‐Institute of Colloids and InterfacesBerlinGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinBerlinGermany
| | - Neta Regev‐Rudzki
- Faculty of BiochemistryDepartment of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Oren Moscovitz
- Department of Biomolecular SystemsMax‐Planck‐Institute of Colloids and InterfacesBerlinGermany
| |
Collapse
|