1
|
Yang C, Zhong W, Li W, Xia Y, Qin L, Tang X, Xia S. LRR Receptor-like Protein in Rapeseed Confers Resistance to Sclerotinia sclerotiorum Infection via a Conserved SsNEP2 Peptide. Int J Mol Sci 2025; 26:4569. [PMID: 40429714 PMCID: PMC12110989 DOI: 10.3390/ijms26104569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Brassica napus is one of the most extensively cultivated oilseed crops in China, but its yield is significantly impacted by stem rot caused by Sclerotinia sclerotiorum. Receptor-like proteins (RLPs) and receptor-like kinases (RLKs) play essential roles in plant-pathogen interactions; however, their regulatory mechanisms remain largely unknown in B. napus. In this study, we investigated the function of the leucine-rich repeat receptor-like protein BnaRLP-G13-1 in Brassica napus immunity. Previous observations indicated that B. napus plants expressing BnaRLP-G13-1 exhibited enhanced resistance to Sclerotinia sclerotiorum. We hypothesized that BnaRLP-G13-1 mediates pathogen recognition and immune signaling. To test this, we employed mitogen-activated protein kinase (MAPK) activity assays, transgenic overexpression analyses, and pathogen infection assays. Our results demonstrated that BnaRLP-G13-1 recognizes the conserved necrosis- and ethylene-inducing peptide Ssnlp24SsNEP2 derived from S. sclerotiorum, triggering MAPK cascades and subsequent immune responses. Furthermore, protein interaction studies revealed that BnaRLP-G13-1 physically interacts with the receptor-like kinase BnaSOBIR1, which is essential for full antifungal defense activation. These results elucidate the molecular basis of BnaRLP-G13-1-mediated immunity, providing insights into improving disease resistance in oilseed crops.
Collapse
Affiliation(s)
- Chenghuizi Yang
- Department of Agriculture and Forestry, Hainan Tropical Ocean University, Sanya 572022, China;
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (W.L.); (Y.X.); (L.Q.); (X.T.)
| | - Weiping Zhong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (W.L.); (Y.X.); (L.Q.); (X.T.)
| | - Wei Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (W.L.); (Y.X.); (L.Q.); (X.T.)
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Yunong Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (W.L.); (Y.X.); (L.Q.); (X.T.)
| | - Lei Qin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (W.L.); (Y.X.); (L.Q.); (X.T.)
| | - Xianyu Tang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (W.L.); (Y.X.); (L.Q.); (X.T.)
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (W.L.); (Y.X.); (L.Q.); (X.T.)
| |
Collapse
|
2
|
Ouyang Y, Xia Y, Tang X, Qin L, Xia S. Trans-Kingdom sRNA Silencing in Sclerotinia sclerotiorum for Crop Fungal Disease Management. Pathogens 2025; 14:398. [PMID: 40333207 PMCID: PMC12030631 DOI: 10.3390/pathogens14040398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/19/2025] [Accepted: 04/19/2025] [Indexed: 05/09/2025] Open
Abstract
Sclerotinia sclerotiorum is a globally widespread and vast destructive plant pathogenic fungus that causes significant yield losses in crops. Due to the lack of effective resistant germplasm resources, the control of diseases caused by S. sclerotiorum largely relies on chemical fungicides. However, excessive use of these chemicals not only causes environmental concerns but also leads to the increased development of resistance in S. sclerotiorum. In contrast, trans-kingdom sRNA silencing-based technologies, such as host-induced gene silencing (HIGS) and spray-induced gene silencing (SIGS), offer novel, effective, and environmentally friendly methods for the management of S. sclerotiorum infection. This review summarizes recent advances in the identification of S. sclerotiorum pathogenic genes, target gene selection, categories, and application of trans-kingdom RNA interference (RNAi) technologies targeting this pathogen. Although some challenges, including off-target effects and the efficiency of external sRNA uptake, exist, recent findings have proposed solutions for further improvement. Combined with the latest developments in CRISPR/Cas gene editing and other technologies, trans-kingdom RNAi has significant potential to become a crucial tool in the control of sclerotinia stem rot (SSR), mitigating the impact of S. sclerotiorum on crop production.
Collapse
Affiliation(s)
- Yuqing Ouyang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Y.O.); (Y.X.); (X.T.)
| | - Yunong Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Y.O.); (Y.X.); (X.T.)
| | - Xianyu Tang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Y.O.); (Y.X.); (X.T.)
| | - Lei Qin
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Y.O.); (Y.X.); (X.T.)
| |
Collapse
|
3
|
Zhao H, Zhu Z, Xu Y, Wang H, Xie J, Cheng J, Jiang D, Fu Y. SsNEP2 Plays a Role in the Interaction Between Sclerotinia sclerotiorum and Coniothyrium minitans. J Fungi (Basel) 2025; 11:151. [PMID: 39997445 PMCID: PMC11856156 DOI: 10.3390/jof11020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Sclerotinia sclerotiorum, a fungal pathogen that is spread worldwide and causes serious diseases on crops, can be parasitized specifically by the mycoparasite Coniothyrium minitans. SsNEP2, encoding a necrosis-inducing protein in S. sclerotiorum, was previously inferred to play a role in the virulence to host plants. In this study, silencing of SsNEP2 in S. sclerotiorum had no significant (p < 0.01) influence on mycelial morphology, while overexpression led to lower mycelial growth and more branches. When amended with the fermentation broth of the SsNEP2 silencing mutants, conidial germination of C. minitans was promoted, while conidial production decreased. When parasitized by C. minitans, enhanced resistance of the SsNEP2 silencing mutants and weaker resistance of the overexpressed transformants were observed compared to the wild-type S. sclerotiorum strain 1980. In addition, the expression of SsNEP2 in C. minitans enhanced mycelial parasitism on S. sclerotiorum and restored the effect of silencing SsNEP2 in S. sclerotiorum on mycoparasitism. Thus, we highlight the role of SsNEP2 as a PAMP-like protein in the mycoparasitism between C. minitans and its host fungus S. sclerotiorum. SsNEP2 can be used to promote the biological potential of C. minitans.
Collapse
Affiliation(s)
- Huizhang Zhao
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (H.W.); (J.X.); (J.C.); (D.J.)
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Zihang Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (H.W.); (J.X.); (J.C.); (D.J.)
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yueli Xu
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Haixuan Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (H.W.); (J.X.); (J.C.); (D.J.)
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Jiatao Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (H.W.); (J.X.); (J.C.); (D.J.)
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Jiasen Cheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (H.W.); (J.X.); (J.C.); (D.J.)
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Daohong Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (H.W.); (J.X.); (J.C.); (D.J.)
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yanping Fu
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
4
|
Liu X, Zhao H, Yuan M, Li P, Xie J, Fu Y, Li B, Yu X, Chen T, Lin Y, Chen W, Jiang D, Cheng J. An effector essential for virulence of necrotrophic fungi targets plant HIRs to inhibit host immunity. Nat Commun 2024; 15:9391. [PMID: 39477937 PMCID: PMC11525884 DOI: 10.1038/s41467-024-53725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/20/2024] [Indexed: 11/02/2024] Open
Abstract
Phytopathogens often secrete effectors to enhance their infection of plants. In the case of Sclerotinia sclerotiorum, a necrotrophic phytopathogen, a secreted protein named SsPEIE1 (Sclerotinia sclerotiorum Plant Early Immunosuppressive Effector 1) plays a crucial role in its virulence. During the early stages of infection, SsPEIE1 is significantly up-regulated. Additionally, transgenic plants expressing SsPEIE1 exhibit increased susceptibility to different phytopathogens. Further investigations revealed that SsPEIE1 interacts with a plasma membrane protein known as hypersensitive induced reaction (HIR) that dampens immune responses. SsPEIE1 is required for S. sclerotiorum virulence on wild-type Arabidopsis but not on Arabidopsis hir4 mutants. Moreover, Arabidopsis hir2 and hir4 mutants exhibit suppressed pathogen-associated molecular pattern-triggered reactive oxygen species (ROS) bursts and salicylic acid (SA)-associated immune gene induction, all of which are phenocopied by the SsPEIE1 transgenic plants. We find that the oligomerization of AtHIR4 is essential for its role in mediating immunity, and that SsPEIE1 inhibits its oligomerization through competitively binding to AtHIR4. Remarkably, both Arabidopsis and rapeseed plants overexpress AtHIR4 display significantly increased resistance to S. sclerotiorum. In summary, these results demonstrate that SsPEIE1 inhibits AtHIR4 oligomerization-mediated immune responses by interacting with the key immune factor AtHIR4, thereby promoting S. sclerotiorum infection.
Collapse
Affiliation(s)
- Xiaofan Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Huihui Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Mingyun Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Pengyue Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Yang Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Weidong Chen
- United States Department of Agriculture, Agricultural Research Service, and Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China.
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China.
| |
Collapse
|
5
|
Astacio JD, Melgarejo P, De Cal A, Espeso EA. Monilinia fructicola genes involved in the cell wall-degrading process in early nectarine infection. Int J Food Microbiol 2024; 419:110750. [PMID: 38776709 DOI: 10.1016/j.ijfoodmicro.2024.110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Brown rot symptoms may be linked to alterations in the gene expression pattern of genes associated with cell wall degradation. In this study, we identify key carbohydrate-active enzymes (CAZymes) involved in cell wall degradation by Monilinia fructicola, including pme2 and pme3 (pectin methylesterases), cut1 (cutinase) and nep2 (necrosis-inducing factor). The expression of these genes is significantly modulated by red and blue light during early nectarine infection. The polygalacturonase gene pg1 and the cellulase gene cel1 also exhibit photoinduction albeit to a lesser extent. Red and blue light cause an acceleration in the initial stages of brown rot development caused by M. fructicola on nectarines. Disease symptoms like tissue maceration were evident after an incubation period of 24 h followed by 14 h of light exposition, in contrast to the usual incubation period of 48 to 72 h. Furthermore, the culture media exerts an impact on gene regulation, suggesting a complex interplay between light and nutrient signalling pathways in M. fructicola. In addition, we observe that red light promotes colony growth on a 12 h photoperiod and consistently reduces conidiation. In contrast, blue light hampers growth rate on both the 12 h and the 8 h photoperiod but only diminishes conidiation on the 12 h photoperiod. These findings enhance our comprehension of genes associated with cell wall degradation and the environmental factors influencing brown rot development.
Collapse
Affiliation(s)
- Juan Diego Astacio
- Grupo de Hongos Fitopatógenos, Departamento de Protección Vegetal, Centro Nacional INIA-CSIC, 28040 Madrid, Spain; Programa Biotecnología y Recursos Genéticos de Plantas y Microorganismos Asociados, ETSIA, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Paloma Melgarejo
- Grupo de Hongos Fitopatógenos, Departamento de Protección Vegetal, Centro Nacional INIA-CSIC, 28040 Madrid, Spain
| | - Antonieta De Cal
- Grupo de Hongos Fitopatógenos, Departamento de Protección Vegetal, Centro Nacional INIA-CSIC, 28040 Madrid, Spain.
| | - Eduardo Antonio Espeso
- Laboratorio de Biología Celular de Aspergillus, Departamento de Biología Celular y Molecular, Centro Investigaciones Biológicas Margarita Salas, CSIC (CIB-CSIC), 28040 Madrid, Spain
| |
Collapse
|
6
|
Zhu Y, Wu C, Deng Y, Yuan W, Zhang T, Lu J. Recent advances in virulence of a broad host range plant pathogen Sclerotinia sclerotiorum: a mini-review. Front Microbiol 2024; 15:1424130. [PMID: 38962122 PMCID: PMC11220166 DOI: 10.3389/fmicb.2024.1424130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Sclerotinia sclerotiorum is a typical necrotrophic plant pathogenic fungus, which has a wide host range and can cause a variety of diseases, leading to serious loss of agricultural production around the world. It is difficult to control and completely eliminate the characteristics, chemical control methods is not ideal. Therefore, it is very important to know the pathogenic mechanism of S. sclerotiorum for improving host living environment, relieving agricultural pressure and promoting economic development. In this paper, the life cycle of S. sclerotiorum is introduced to understand the whole process of S. sclerotiorum infection. Through the analysis of the pathogenic mechanism, this paper summarized the reported content, mainly focused on the oxalic acid, cell wall degrading enzyme and effector protein in the process of infection and its mechanism. Besides, recent studies reported virulence-related genes in S. sclerotiorum have been summarized in the paper. According to analysis, those genes were related to the growth and development of the hypha and appressorium, the signaling and regulatory factors of S. sclerotiorum and so on, to further influence the ability to infect the host critically. The application of host-induced gene silencing (HIGS)is considered as a potential effective tool to control various fungi in crops, which provides an important reference for the study of pathogenesis and green control of S. sclerotiorum.
Collapse
Affiliation(s)
| | | | | | | | | | - Junxing Lu
- Chongqing Key Laboratory of Plant Environmental Adaptations, College of Life Science, Chongqing Normal University, Chongqing, China
| |
Collapse
|
7
|
Ma M, Tang L, Sun R, Lyu X, Xie J, Fu Y, Li B, Chen T, Lin Y, Yu X, Chen W, Jiang D, Cheng J. An effector SsCVNH promotes the virulence of Sclerotinia sclerotiorum through targeting class III peroxidase AtPRX71. MOLECULAR PLANT PATHOLOGY 2024; 25:e13464. [PMID: 38695733 PMCID: PMC11064801 DOI: 10.1111/mpp.13464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
Many plant pathogens secrete effector proteins into the host plant to suppress host immunity and facilitate pathogen colonization. The necrotrophic pathogen Sclerotinia sclerotiorum causes severe plant diseases and results in enormous economic losses, in which secreted proteins play a crucial role. SsCVNH was previously reported as a secreted protein, and its expression is significantly upregulated at 3 h after inoculation on the host plant. Here, we further demonstrated that deletion of SsCVNH leads to attenuated virulence. Heterologous expression of SsCVNH in Arabidopsis enhanced pathogen infection, inhibited the host PAMP-triggered immunity (PTI) response and increased plant susceptibility to S. sclerotiorum. SsCVNH interacted with class III peroxidase AtPRX71, a positive regulator of innate immunity against plant pathogens. SsCVNH could also interact with other class III peroxidases, thus reducing peroxidase activity and suppressing plant immunity. Our results reveal a new infection strategy employed by S. sclerotiorum in which the fungus suppresses the function of class III peroxidases, the major component of PTI to promote its own infection.
Collapse
Affiliation(s)
- Ming Ma
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Liguang Tang
- Wuhan Vegetable Research InstituteWuhan Academy of Agricultural ScienceWuhanHubeiChina
| | - Rui Sun
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xueliang Lyu
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jiatao Xie
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Bo Li
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Tao Chen
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xiao Yu
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Weidong Chen
- United States Department of Agriculture, Agricultural Research ServiceWashington State UniversityPullmanWashingtonUSA
| | - Daohong Jiang
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jiasen Cheng
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
8
|
Qin L, Nong J, Cui K, Tang X, Gong X, Xia Y, Xu Y, Qiu Y, Li X, Xia S. SsCak1 Regulates Growth and Pathogenicity in Sclerotinia sclerotiorum. Int J Mol Sci 2023; 24:12610. [PMID: 37628791 PMCID: PMC10454577 DOI: 10.3390/ijms241612610] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Sclerotinia sclerotiorum is a devastating fungal pathogen that causes severe crop losses worldwide. It is of vital importance to understand its pathogenic mechanism for disease control. Through a forward genetic screen combined with next-generation sequencing, a putative protein kinase, SsCak1, was found to be involved in the growth and pathogenicity of S. sclerotiorum. Knockout and complementation experiments confirmed that deletions in SsCak1 caused defects in mycelium and sclerotia development, as well as appressoria formation and host penetration, leading to complete loss of virulence. These findings suggest that SsCak1 is essential for the growth, development, and pathogenicity of S. sclerotiorum. Therefore, SsCak1 could serve as a potential target for the control of S. sclerotiorum infection through host-induced gene silencing (HIGS), which could increase crop resistance to the pathogen.
Collapse
Affiliation(s)
- Lei Qin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (L.Q.); (J.N.); (X.T.); (X.G.); (Y.X.)
| | - Jieying Nong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (L.Q.); (J.N.); (X.T.); (X.G.); (Y.X.)
| | - Kan Cui
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Xianyu Tang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (L.Q.); (J.N.); (X.T.); (X.G.); (Y.X.)
| | - Xin Gong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (L.Q.); (J.N.); (X.T.); (X.G.); (Y.X.)
| | - Yunong Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (L.Q.); (J.N.); (X.T.); (X.G.); (Y.X.)
| | - Yan Xu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yilan Qiu
- Department of Life Science, Hunan Normal University, Changsha 410081, China;
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (L.Q.); (J.N.); (X.T.); (X.G.); (Y.X.)
| |
Collapse
|
9
|
Newman TE, Kim H, Khentry Y, Sohn KH, Derbyshire MC, Kamphuis LG. The broad host range pathogen Sclerotinia sclerotiorum produces multiple effector proteins that induce host cell death intracellularly. MOLECULAR PLANT PATHOLOGY 2023; 24:866-881. [PMID: 37038612 PMCID: PMC10346375 DOI: 10.1111/mpp.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Sclerotinia sclerotiorum is a broad host range necrotrophic fungal pathogen, which causes disease on many economically important crop species. S. sclerotiorum has been shown to secrete small effector proteins to kill host cells and acquire nutrients. We set out to discover novel necrosis-inducing effectors and characterize their activity using transient expression in Nicotiana benthamiana leaves. Five intracellular necrosis-inducing effectors were identified with differing host subcellular localization patterns, which were named intracellular necrosis-inducing effector 1-5 (SsINE1-5). We show for the first time a broad host range pathogen effector, SsINE1, that uses an RxLR-like motif to enter host cells. Furthermore, we provide preliminary evidence that SsINE5 induces necrosis via an NLR protein. All five of the identified effectors are highly conserved in globally sourced S. sclerotiorum isolates. Taken together, these results advance our understanding of the virulence mechanisms employed by S. sclerotiorum and reveal potential avenues for enhancing genetic resistance to this damaging fungal pathogen.
Collapse
Affiliation(s)
- Toby E. Newman
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Haseong Kim
- Plant Immunity Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Yuphin Khentry
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Kee Hoon Sohn
- Plant Immunity Research CenterSeoul National UniversitySeoul08826Republic of Korea
- Department of Agricultural BiotechnologySeoul National UniversitySeoul08826Republic of Korea
- Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Republic of Korea
| | - Mark C. Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Lars G. Kamphuis
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| |
Collapse
|
10
|
Li Z, Liu J, Ma W, Li X. Characteristics, Roles and Applications of Proteinaceous Elicitors from Pathogens in Plant Immunity. Life (Basel) 2023; 13:life13020268. [PMID: 36836624 PMCID: PMC9960299 DOI: 10.3390/life13020268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
In interactions between pathogens and plants, pathogens secrete many molecules that facilitate plant infection, and some of these compounds are recognized by plant pattern recognition receptors (PRRs), which induce immune responses. Molecules in both pathogens and plants that trigger immune responses in plants are termed elicitors. On the basis of their chemical content, elicitors can be classified into carbohydrates, lipopeptides, proteinaceous compounds and other types. Although many studies have focused on the involvement of elicitors in plants, especially on pathophysiological changes induced by elicitors in plants and the mechanisms mediating these changes, there is a lack of up-to-date reviews on the characteristics and functions of proteinaceous elicitors. In this mini-review, we provide an overview of the up-to-date knowledge on several important families of pathogenic proteinaceous elicitors (i.e., harpins, necrosis- and ethylene-inducing peptide 1 (nep1)-like proteins (NLPs) and elicitins), focusing mainly on their structures, characteristics and effects on plants, specifically on their roles in plant immune responses. A solid understanding of elicitors may be helpful to decrease the use of agrochemicals in agriculture and gardening, generate more resistant germplasms and increase crop yields.
Collapse
Affiliation(s)
- Zhangqun Li
- School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China
- Institute of Biopharmaceuticals, Taizhou University, Taizhou 318000, China
- Correspondence:
| | - Junnan Liu
- School of Life Science, Taizhou University, Taizhou 318000, China
| | - Wenting Ma
- School of Life Science, Taizhou University, Taizhou 318000, China
| | - Xiaofang Li
- School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China
- Institute of Biopharmaceuticals, Taizhou University, Taizhou 318000, China
| |
Collapse
|
11
|
Yang G, Yang J, Zhang Q, Wang W, Feng L, Zhao L, An B, Wang Q, He C, Luo H. The Effector Protein CgNLP1 of Colletotrichum gloeosporioides Affects Invasion and Disrupts Nuclear Localization of Necrosis-Induced Transcription Factor HbMYB8-Like to Suppress Plant Defense Signaling. Front Microbiol 2022; 13:911479. [PMID: 35770165 PMCID: PMC9234567 DOI: 10.3389/fmicb.2022.911479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Fungi secrete numerous effectors to modulate host defense systems. Understanding the molecular mechanisms by which fungal effectors regulate plant defense is of great importance for the development of novel strategies for disease control. In this study, we identified necrosis- and ethylene-inducing protein 1 (Nep1)-like protein (NLP) effector gene, CgNLP1, which contributed to conidial germination, appressorium formation, invasive growth, and virulence of Colletotrichum gloeosporioides to the rubber tree. Transient expression of CgNLP1 in the leaves of Nicotiana benthamiana induced ethylene production in plants. Ectopic expression of CgNLP1 in Arabidopsis significantly enhanced the resistance to Botrytis cinerea and Alternaria brassicicola. An R2R3 type transcription factor HbMYB8-like of rubber tree was identified as the target of CgNLP1.HbMYB8-like, localized on the nucleus, and induced cell death in N. benthamiana. CgNLP1 disrupted nuclear accumulation of HbMYB8-like and suppressed HbMYB8-like induced cell death, which is mediated by the salicylic acid (SA) signal pathway. This study suggested a new strategy whereby C. gloeosporioides exploited the CgNLP1 effector to affect invasion and suppress a host defense regulator HbMYB8-like to facilitate infection.
Collapse
Affiliation(s)
- Guangyong Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Jie Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Qiwei Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Wenfeng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
| | - Liping Feng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
| | - Li Zhao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
| | - Bang An
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Qiannan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Hongli Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- *Correspondence: Hongli Luo
| |
Collapse
|