1
|
Leonetti P, Dallera D, De Marchi D, Candito P, Pasotti L, Macovei A. Exploring the putative microRNAs cross-kingdom transfer in Solanum lycopersicum-Meloidogyne incognita interactions. FRONTIERS IN PLANT SCIENCE 2024; 15:1383986. [PMID: 38784062 PMCID: PMC11114104 DOI: 10.3389/fpls.2024.1383986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Introduction Plant-pathogen interaction is an inexhaustible source of information on how to sustainably control diseases that negatively affect agricultural production. Meloidogyne incognita is a root-knot nematode (RKN), representing a pest for many crops, including tomato (Solanum lycopersicum). RKNs are a global threat to agriculture, especially under climate change, and RNA technologies offer a potential alternative to chemical nematicides. While endogenous microRNAs have been identified in both S. lycopersicum and M. incognita, and their roles have been related to the regulation of developmental changes, no study has investigated the miRNAs cross-kingdom transfer during this interaction. Methods Here, we propose a bioinformatics pipeline to highlight potential miRNA-dependent cross-kingdom interactions between tomato and M. incognita. Results The obtained data show that nematode miRNAs putatively targeting tomato genes are mostly related to detrimental effects on plant development and defense. Similarly, tomato miRNAs putatively targeting M. incognita biological processes have negative effects on digestion, mobility, and reproduction. To experimentally test this hypothesis, an in vitro feeding assay was carried out using sly-miRNAs selected from the bioinformatics approach. The results show that two tomato miRNAs (sly-miRNA156a, sly-miR169f) soaked by juvenile larvae (J2s) affected their ability to infect plant roots and form galls. This was also coupled with a significant downregulation of predicted target genes (Minc11367, Minc00111), as revealed by a qRT-PCR analysis. Discussions Therefore, the current study expands the knowledge related to the cross-kingdom miRNAs involvement in host-parasite interactions and could pave the way for the application of exogenous plant miRNAs as tools to control nematode infection.
Collapse
Affiliation(s)
- Paola Leonetti
- Institute for Sustainable Plant Protection of the National Research Council, Unit of Bari, Bari, Italy
| | - Debora Dallera
- Laboratory of Bioinformatics, Mathematical Modelling, and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering - Centre for Health Technology, University of Pavia, Pavia, Italy
| | - Davide De Marchi
- Laboratory of Bioinformatics, Mathematical Modelling, and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering - Centre for Health Technology, University of Pavia, Pavia, Italy
| | - Pamela Candito
- Laboratory of Bioinformatics, Mathematical Modelling, and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering - Centre for Health Technology, University of Pavia, Pavia, Italy
| | - Lorenzo Pasotti
- Laboratory of Bioinformatics, Mathematical Modelling, and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering - Centre for Health Technology, University of Pavia, Pavia, Italy
| | - Anca Macovei
- Plant Biotechnology Laboratory, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| |
Collapse
|
2
|
Bai PH, Yu JP, Hu RR, Fu QW, Wu HC, Li XY, Zu GH, Liu BS, Zhang Y. Behavioral and molecular response of the insect parasitic nematode Steinernema carpocapsae to plant volatiles. J Invertebr Pathol 2024; 203:108067. [PMID: 38278342 DOI: 10.1016/j.jip.2024.108067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/31/2023] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Entomopathogenic nematodes (EPNs) use the chemical cues emitted by insects and insect-damaged plants to locate their hosts. Steinernema carpocapsae, a species of EPN, is an established biocontrol agent used against insect pests. Despite its promising potential, the molecular mechanisms underlying its ability to detect plant volatiles remain poorly understood. In this study, we investigated the response of S. carpocapsae infective juveniles (IJs) to 8 different plant volatiles. Among these, carvone was found to be the most attractive volatile compound. To understand the molecular basis of the response of IJs to carvone, we used RNA-Seq technology to identify gene expression changes in response to carvone treatment. Transcriptome analysis revealed 721 differentially expressed genes (DEGs) between carvone-treated and control groups, with 403 genes being significantly upregulated and 318 genes downregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the responsive DEGs to carvone attraction were mainly involved in locomotion, localization, behavior, response to stimulus, and olfactory transduction. We also identified four upregulated genes of chemoreceptor and response to stimulus that were involved in the response of IJs to carvone attraction. Our results provide insights into the potential transcriptional mechanisms underlying the response of S. carpocapsae to carvone, which can be utilized to develop environmentally friendly strategies for attracting EPNs.
Collapse
Affiliation(s)
- Peng-Hua Bai
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300384, PR China
| | - Jin-Ping Yu
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300384, PR China
| | - Rui-Rui Hu
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300384, PR China
| | - Qian-Wen Fu
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Hai-Chao Wu
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Xing-Yue Li
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Guo-Hao Zu
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Bao-Sheng Liu
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300384, PR China.
| | - Yu Zhang
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Inner Mongolia, Hohhot 010010, PR China.
| |
Collapse
|
3
|
Dutta TK, Akhil VS, Kundu A, Dash M, Phani V, Sirohi A, Somvanshi VS. Induced knockdown of Mg-odr-1 and Mg-odr-3 perturbed the host seeking behavior of Meloidogyne graminicola in rice. Heliyon 2024; 10:e26384. [PMID: 38420492 PMCID: PMC10900406 DOI: 10.1016/j.heliyon.2024.e26384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Root-knot nematode Meloidogyne graminicola is one of the most destructive plant parasites in upland as well as direct seeded rice. As an integral part of nematode biology, host finding behavior involves perceiving and responding to different chemical cues originating from the rhizosphere. A sustainable management tactic may include retardation of nematode chemoreception that would impair them to detect and discriminate the host stimuli. Deciphering the molecular basis of nematode chemoreception is vital to identify chokepoints for chemical or genetic interventions. However, compared to the well-characterized chemoreception mechanism in model nematode Caenorhabditis elegans, plant nematode chemoreception is yet underexplored. Herein, the full-length cDNA sequences of two chemotaxis-related genes (Mg-odr-1 and Mg-odr-3) were cloned from M. graminicola. Both the genes were markedly upregulated in the early developmental stages of M. graminicola suggesting their involvement in host finding processes. RNAi-induced independent knockdown of Mg-odr-1 and Mg-odr-3 caused behavioral aberration in second-stage juveniles of M. graminicola which in turn perturbed the nematodes' host finding ability and parasitic success inside rice roots. Additionally, nematodes' chemotactic response to different host root exudates, volatile and nonvolatile compounds was affected. Our results demonstrating the role of specific chemosensory genes in modulating M. graminicola host seeking behavior can enrich the existing knowledge of plant nematode chemoreception mechanism, and these genes can be targeted for novel nematicide development or in planta RNAi screens.
Collapse
Affiliation(s)
- Tushar K. Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Voodikala S. Akhil
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Artha Kundu
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Manoranjan Dash
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Victor Phani
- Department of Agricultural Entomology, Uttar Banga Krishi Viswavidyalaya (Majhian Campus), Balurghat, 733133, India
| | - Anil Sirohi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vishal S. Somvanshi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
4
|
Dutta TK, Akhil VS, Dash M, Kundu A, Phani V, Sirohi A. Molecular and functional characterization of chemosensory genes from the root-knot nematode Meloidogyne graminicola. BMC Genomics 2023; 24:745. [PMID: 38057766 DOI: 10.1186/s12864-023-09864-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Root-knot nematode Meloidogyne graminicola has emerged as a major threat in rice agroecosystems owing to climate change-induced changes in cultivation practices. Synthetic nematicides are continually being withdrawn from the nematode management toolbox because of their ill effects on the environment. A sustainable strategy would be to develop novel nematicides or resistant plants that would target nematode sensory perception, which is a key step in the host finding biology of plant-parasitic nematodes (PPNs). However, compared to the extensive literature on the free-living nematode Caenorhabditis elegans, negligible research has been performed on PPN chemosensory biology. RESULTS The present study characterizes the five chemosensory genes (Mg-odr-7, Mg-tax-4, Mg-tax-4.1, Mg-osm-9, and Mg-ocr-2) from M. graminicola that are putatively associated with nematode host-finding biology. All the genes were highly transcribed in the early life stages, and RNA interference (RNAi)-induced downregulation of each candidate gene perturbed the normal behavioural phenotypes of M. graminicola, as determined by examining the tracking pattern of juveniles on Pluronic gel medium, attraction to and penetration in rice root tip, and developmental progression in rice root. In addition, a detrimental effect on nematode chemotaxis towards different volatile and nonvolatile organic compounds and host root exudates was documented. CONCLUSION Our findings enrich the existing literature on PPN chemosensory biology and can supplement future research aimed at identifying a comprehensive chemosensory signal transduction pathway in PPNs.
Collapse
Affiliation(s)
- Tushar K Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Voodikala S Akhil
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Manoranjan Dash
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Artha Kundu
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Balurghat, Dakshin Dinajpur, West Bengal, India
| | - Anil Sirohi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|