1
|
Wójcicki M, Shymialevich D, Średnicka P, Emanowicz P, Ostrowska A, Cieślak H, Sokołowska B. Phenotypic Characterization and Genome Analysis of New Broad-Spectrum Virulent Salmophage, Salmonella Phage KKP_3822, for Biocontrol of Multidrug-Resistant Salmonella enterica Strains. Int J Mol Sci 2024; 25:12930. [PMID: 39684641 DOI: 10.3390/ijms252312930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/30/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Salmonella is one of the main foodborne pathogens. Irrational antibiotic management has led to an increase in the incidence of multidrug-resistant strains. Bacteriophages may be an alternative method of food biopreservation and contribute to reducing the number of food poisonings requiring pharmacotherapy. This study aimed to isolate a bacteriophage (phage) targeting indigenous multidrug-resistant (MDR) Salmonella strains, followed by their biological, morphological, and genomic characterization. In this study we isolated Salmonella phage KKP_3822, targeting MDR Salmonella Manchester strain KKP 1213. Salmonella phage KKP_3822 retained high activity in the temperature range from -20 °C to 40 °C and active acidity from pH 3 to 11. Temperatures of 70 °C and 80 °C and extreme pH values (2 and 12) significantly reduced the phage titer. Its activity decreased proportionally to the time of UV exposure. Genome analysis (linear dsDNA with a length of 114,843 bp) revealed the presence of 27 tRNA genes. Proteins encoded by the vB_Sen-IAFB3822 phage were divided into functional modules related to (i) phage structure/assembly, (ii) DNA replication/modification/regulation, (iii) phage lysis, and (iv) DNA packaging into the capsid. No genes associated with antibiotic resistance or integration into the host genome, markers of temperate bacteriophages, were annotated in the Salmonella phage KKP_3822 genome. Based on morphological features and whole-genome sequence analysis, the newly isolated Salmonella phage KKP_3822 shows the greatest similarity to representatives of tailed phages from the Caudoviricetes class, Demerecviridae family, and Epseptimavirus genus. Genome analysis confirmed the virulent nature of the Salmonella phage KKP_3822, making it a potential candidate for food biocontrol.
Collapse
Affiliation(s)
- Michał Wójcicki
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Dziyana Shymialevich
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Paulina Średnicka
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Paulina Emanowicz
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), Ciszewskiego 8 Str., 02-786 Warsaw, Poland
| | - Hanna Cieślak
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| |
Collapse
|
2
|
Dlamini SB, Mlambo V, Mnisi CM, Ateba CN. Virulence, multiple drug resistance, and biofilm-formation in Salmonella species isolated from layer, broiler, and dual-purpose indigenous chickens. PLoS One 2024; 19:e0310010. [PMID: 39466757 PMCID: PMC11515961 DOI: 10.1371/journal.pone.0310010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 08/22/2024] [Indexed: 10/30/2024] Open
Abstract
Globally, the significant risk to food safety and public health posed by antimicrobial-resistant foodborne Salmonella pathogens is driven by the utilization of in-feed antibiotics, with variations in usage across poultry production systems. The current study investigated the occurrence of virulence, antimicrobial resistant profiles, and biofilm-forming potentials of Salmonella isolates sourced from different chicken types. A total of 75 cloacal faecal samples were collected using sterile swabs from layer, broiler, and indigenous chickens across 15 poultry farms (five farms per chicken type). The samples were analysed for the presence of Salmonella spp. using species-specific PCR analysis. Out of the 150 presumptive isolates, a large proportion (82; 55%) were confirmed as Salmonella species, comprising the serovars S. typhimurium (49%) and S. enteritidis (30%) while 21% were uncategorised. Based on phenotypic antibiotic susceptibility test, the Salmonella isolates were most often resistant to erythromycin (62%), tetracycline (59%), and trimethoprim (32%). The dominant multiple antibiotic resistance phenotypes were SXT-W-TE (16%), E-W-TE (10%), AML-E-TE (10%), E-SXT-W-TE (13%), and AMP-AML-E-SXT-W-TE (10%). Genotypic assessment of antibiotic resistance genes revealed that isolates harboured the ant (52%), tet (A) (46%), sui1 (13%), sui2 (14%), and tet (B) (9%) determinants. Major virulence genes comprising the invasion gene spiC, the SPI-3 encoded protein (misL) that is associated with the establishment of chronic infections and host specificity as well as the SPI-4 encoded orfL that facilitates adhesion, autotransportation and colonisation were detected in 26%, 16%, and 14% of the isolates respectively. There was no significant difference on the proportion of Salmonella species and the occurrence of virulence and antimicrobial resistance determinants among Salmonella isolates obtained from different chicken types. In addition, neither the chicken type nor incubation temperature influenced the potential of the Salmonella isolates to form biofilms, although a large proportion (62%) exhibited weak to strong biofilm-forming potentials. Moderate to high proportions of antimicrobial resistant pathogenic Salmonella serovars were detected in the study but these did not vary with poultry production systems.
Collapse
Affiliation(s)
- Sicelo B. Dlamini
- Department of Animal Science, School of Agricultural Sciences, North-West University, Mafikeng, South Africa
- School of Agricultural Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
| | - Victor Mlambo
- School of Agricultural Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
| | - Caven Mguvane Mnisi
- Department of Animal Science, School of Agricultural Sciences, North-West University, Mafikeng, South Africa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng, South Africa
| | - Collins Njie Ateba
- Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng, South Africa
| |
Collapse
|
3
|
Alotaibi B, El-Masry TA, Negm WA, Saleh A, Alotaibi KN, Alosaimi ME, Elekhnawy E. In Vivo and in Vitro Mitigation of Salmonella Typhimurium Isolates by Fortunella Japonica Fruit Extract. Curr Microbiol 2024; 81:262. [PMID: 38981879 DOI: 10.1007/s00284-024-03770-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
The vast dissemination of resistance to different antibiotics among bacterial pathogens, especially foodborne pathogens, has drawn major research attention. Thus, many attempts have been made to reveal novel alternatives to the current antibiotics. Due to their variable pharmacologically active phytochemicals, plants represent a good solution for this issue. This study investigated the antibacterial potential of Kumquat or Fortunella japonica methanol extract (FJME) against Salmonella typhimurium clinical isolates. Gas chromatography coupled with mass spectrometry (GC/MS) characterized 39 compounds in FJME. Palmitic acid (15.386%) and cis-vaccenic acid (15.012%) are the major active constituents detected by GC/MS. Remarkably, FJME had minimum inhibitory concentrations from 128 to 512 µg/mL in vitro. In addition, a systemic infection model revealed the in vivo antibacterial action of FJME. The antibacterial therapeutic activity of FJME was noticed by improving the histological features of the liver and spleen. Moreover, there was a perceptible lessening (p < 0.05) of the levels of the oxidative stress markers (nitric oxide and malondialdehyde) using ELISA. In addition, the gene expression of the proinflammatory cytokine (interleukin 6) was downregulated. On the other hand, there was an upregulation of the anti-inflammatory cytokine (interleukin 10). Accordingly, future clinical investigations should be done to reveal the potential antibacterial action of FJME on other food pathogens.
Collapse
Affiliation(s)
- Badriyah Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, 84428, Riyadh, Saudi Arabia
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, 84428, Riyadh, Saudi Arabia
| | | | - Manal E Alosaimi
- Department of Basic Health Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, 84428, Riyadh, Saudi Arabia
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
4
|
Xu B, Hou Z, Liu L, Wei J. Genomic and proteomic analysis of Salmonella Enteritidis isolated from a patient with foodborne diarrhea. World J Microbiol Biotechnol 2023; 40:48. [PMID: 38114804 DOI: 10.1007/s11274-023-03857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Salmonella is a major cause of foodborne diseases and clinical infections worldwide. This study aimed to investigate the drug resistance, genomic characteristics, and protein expression of foodborne Salmonella in Shanxi Province. We isolated a strain of Salmonella Enteritidis from patient feces and designated it 31A. The drug resistance of 31A against 14 antibiotics was determined using an antimicrobial susceptibility test. Whole-genome sequencing and quantitative proteomic analysis were performed on the 31A strain. Functional annotation of drug resistance genes/proteins and virulence genes/proteins was conducted using various databases, such as VFDB, ARDB, CAZY, COG, KOG, CARD, GO, and KEGG. The focus of this study was understanding the mechanisms related to food poisoning, and the genetic evolution of 31A was analyzed through comparative genomics. The 31A strain belonged to ST11 Salmonella Enteritidis and showed resistance to β-lactam and quinolone antibiotics. The genome of 31A had 70 drug resistance genes, 321 virulence genes, 12 SPIs, and 3 plasmid replicons. Functional annotation of these drug resistance and virulence genes revealed that drug resistance genes were mainly involved in defense mechanisms to confer resistance to antibiotics, while virulence genes were mainly associated with cellular motility. There were extensive interactions among the virulence genes, which included SPI-1, SPI-2, flagella, fimbriae, capsules and so on. The 31A strain had a close relationship with ASM2413794v1 and ASM130523v1, which were also ST11 Salmonella Enteritidis strains from Asia and originated from clinical patients, animals, and food. These results suggested minimal genomic differences among strains from different sources and the potential for interhost transmission. Differential analysis of the virulence and drug resistance-related proteins revealed their involvement in pathways related to human diseases, indicating that these proteins mediated bacterial invasion and infection. The integration of genomic and proteomic information led to the discovery that Salmonella can survive in a strong acid environment through various acid resistance mechanisms after entering the intestine with food and then invade intestinal epithelial cells to exert its effects. In this study, we comprehensively analyzed the drug resistance and virulence characteristics of Salmonella Enteritidis 31A using a combination of genomic and proteomic approaches, focusing on the pathogenic mechanism of Salmonella Enteritidis in food poisoning. We found significant fluctuations in various virulence factors during the survival, invasion, and infection of Salmonella Enteritidis, which collectively contributed to its pathogenicity. These results provide important information for the source tracing, prevention, and treatment of clinical infections caused by Salmonella Enteritidis.
Collapse
Affiliation(s)
- Benjin Xu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China.
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China.
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China.
| | - Zhuru Hou
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China.
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China.
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Jianhong Wei
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China
| |
Collapse
|
5
|
Xu B, Hou Z, Liu L, Yan R, Zhang J, Wei J, Du M, Xuan Y, Fan L, Li Z. The Resistance and Virulence Characteristics of Salmonella Enteritidis Strain Isolated from Patients with Food Poisoning Based on the Whole-Genome Sequencing and Quantitative Proteomic Analysis. Infect Drug Resist 2023; 16:6567-6586. [PMID: 37823028 PMCID: PMC10564084 DOI: 10.2147/idr.s411125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Objective This paper explores the drug resistance, genome and proteome expression characteristics of Salmonella from a food poisoning event. Methods A multidrug-resistant Salmonella Enteritidis strain, labeled as 27A, was isolated and identified from a food poisoning patient. Antimicrobial susceptibility testing determined the resistance of 27A strain to 14 antibiotics. Then, WGS analysis and comparative genomics analysis were performed on 27A, and the functional annotation of resistance genes, virulence genes were performed based on VFDB, ARDB, COG, CARD, GO, KEGG, and CAZY databases. Meanwhile, based on iTRAQ technology, quantitative proteomic analysis was conducted on 27A to analyze the functions and interactions of differentially expressed proteins related to bacterial resistance and pathogenicity. Results Strain 27A belonged to ST11 S. Enteritidis and was resistant to levofloxacin, ciprofloxacin, ampicillin, piperacillin, and ampicillin/sulbactam. There were 33 drug resistance genes, 384 virulence genes and 2 plasmid replicon, IncFIB(S) and IncFII(S), annotated by WGS. Proteomic analysis revealed significant changes in virulence and drug proteins, which were mainly involved in bacterial pathogenicity and metabolic processes. PPI prediction showed the relationship between virulence proteins and T3SS proteins, and PagN cooperated with proteins related to T3SS to jointly mediate the invasion of 27A strain on the human body. Phylogenetic analysis indicated that S. Enteritidis has potential transmission in humans, food, and animals. Conclusion This study comprehensively analyzed the drug resistance and virulence phenotypes of S. Enteritidis 27A using genomic and proteomic approaches. These helps reveal the drug resistance and virulence mechanisms of S. Enteritidis, and provides important information for the source tracing and the prevention of related diseases, which lays a foundation for research on food safety, public health monitoring, and the drug resistance and pathogenicity of S. Enteritidis.
Collapse
Affiliation(s)
- Benjin Xu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Zhuru Hou
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Rongrong Yan
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Jinjing Zhang
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Jianhong Wei
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| | - Miao Du
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
| | - Yan Xuan
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
| | - Lei Fan
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| | - Zhuoxi Li
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| |
Collapse
|
6
|
Petano-Duque JM, Rueda-García V, Rondón-Barragán IS. Virulence genes identification in Salmonella enterica isolates from humans, crocodiles, and poultry farms from two regions in Colombia. Vet World 2023; 16:2096-2103. [PMID: 38023281 PMCID: PMC10668553 DOI: 10.14202/vetworld.2023.2096-2103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/11/2023] [Indexed: 12/01/2023] Open
Abstract
Background and Aim Salmonella spp. is frequently found in the digestive tract of birds and reptiles and transmitted to humans through food. Salmonellosis is a public health problem because of pathogenicity variability in strains for virulence factors. This study aimed to identify the virulence genes in Salmonella isolates from humans, crocodiles, broiler cloacas, and broiler carcasses from two departments of Colombia. Materials and Methods This study was conducted on 31 Salmonella enterica strains from humans with gastroenteritis (seven), crocodiles (seven), broiler cloacas (six), and broiler carcasses (12) from Tolima and Santander departments of Colombia, belonging to 21 serotypes. All samples were tested for Salmonella spp. using culture method on selective and non-selective mediums. Extraction of genomic DNA was performed from fresh colonies, DNA quality was verified by spectrophotometry and confirmed by amplification of InvA gene using conventional polymerase chain reaction (PCR). bapA, fimA, icmF, IroB, marT, mgtC, nlpI, oafA, pagN, siiD, spvC, spvR, spvB, Stn, and vexA genes were amplified by PCR. Results The most prevalent gene was bapA (100%), followed by marT (96.77%), mgtC (93.55%), and fimA (83.87%). Likewise, IroB (70.97%), Stn (67.74%), spvR (61.29%), pagN (54.84%), icmF (54.8%), and SiiD (45.16%) were positive for more than 50% of the strains. Furthermore, none of the isolates tested positive for the vexA gene. Salmonella isolates presented 26 virulence profiles. Conclusion This study reported 14 virulence genes in Salmonella spp. isolates from humans with gastroenteritis, crocodiles, and broiler cloacas and carcasses. The distribution of virulence genes differed among sources. This study could help in decision-making by health and sanitary authorities.
Collapse
Affiliation(s)
- Julieth Michel Petano-Duque
- Poultry Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
| | - Valentina Rueda-García
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Poultry Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
| |
Collapse
|
7
|
Wójcicki M, Świder O, Średnicka P, Shymialevich D, Ilczuk T, Koperski Ł, Cieślak H, Sokołowska B, Juszczuk-Kubiak E. Newly Isolated Virulent Salmophages for Biocontrol of Multidrug-Resistant Salmonella in Ready-to-Eat Plant-Based Food. Int J Mol Sci 2023; 24:10134. [PMCID: PMC10299301 DOI: 10.3390/ijms241210134] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Due to irrational antibiotic stewardship, an increase in the incidence of multidrug resistance of bacteria has been observed recently. Therefore, the search for new therapeutic methods for pathogen infection treatment seems to be necessary. One of the possibilities is the utilization of bacteriophages (phages)—the natural enemies of bacteria. Thus, this study is aimed at the genomic and functional characterization of two newly isolated phages targeting MDR Salmonella enterica strains and their efficacy in salmonellosis biocontrol in raw carrot–apple juice. The Salmonella phage vB_Sen-IAFB3829 (Salmonella phage strain KKP 3829) and Salmonella phage vB_Sen-IAFB3830 (Salmonella phage strain KKP 3830) were isolated against S. I (6,8:l,-:1,7) strain KKP 1762 and S. Typhimurium strain KKP 3080 host strains, respectively. Based on the transmission electron microscopy (TEM) and whole-genome sequencing (WGS) analyses, the viruses were identified as members of tailed bacteriophages from the Caudoviricetes class. Genome sequencing revealed that these phages have linear double-stranded DNA and sizes of 58,992 bp (vB_Sen-IAFB3829) and 50,514 bp (vB_Sen-IAFB3830). Phages retained their activity in a wide range of temperatures (from −20 °C to 60 °C) and active acidity values (pH from 3 to 11). The exposure of phages to UV radiation significantly decreased their activity in proportion to the exposure time. The application of phages to the food matrices significantly reduced the level of Salmonella contamination compared to the control. Genome analysis showed that both phages do not encode virulence or toxin genes and can be classified as virulent bacteriophages. Virulent characteristics and no possible pathogen factors make examined phages feasible to be potential candidates for food biocontrol.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (P.Ś.); (E.J.-K.)
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland;
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (P.Ś.); (E.J.-K.)
| | - Dziyana Shymialevich
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (D.S.); (H.C.)
| | - Tomasz Ilczuk
- Department of Pathology, Medical University of Warsaw, Pawińskiego 7 Str., 02-106 Warsaw, Poland; (T.I.); (Ł.K.)
| | - Łukasz Koperski
- Department of Pathology, Medical University of Warsaw, Pawińskiego 7 Str., 02-106 Warsaw, Poland; (T.I.); (Ł.K.)
| | - Hanna Cieślak
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (D.S.); (H.C.)
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (P.Ś.); (E.J.-K.)
| |
Collapse
|