1
|
Park M, Shin S. Bee Venom Acupuncture in Traditional Korean Medicine: A Review of Clinical Practice Guidelines. Toxins (Basel) 2025; 17:158. [PMID: 40278656 DOI: 10.3390/toxins17040158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/16/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
Bee venom acupuncture (BVA) is used in traditional Korean medicine (TKM) for various diseases, but its evaluation within clinical practice guidelines (CPGs) has not been comprehensively reviewed. This study aimed to review TKM-CPGs to characterize the range of conditions for which BVA is recommended, summarize the level of evidence and recommendation grades, and assess the factors influencing the grades. Eighteen TKM-CPGs, including 30 BVA-related recommendations, were identified. Data on targeted diseases/symptoms, treatment protocols, evidence levels, and recommendation grades were extracted. The CPGs recommended BVA for musculoskeletal and neurological disorders in standalone or combined therapy. Most of the evidence for BVA recommendations was evaluated with low to moderate levels based on randomized controlled trials. The grades of recommendations were mostly B or C, indicating that BVA is advisable or potentially beneficial. Although the CPGs offer some guidance on treatment protocols for BVA, there remains a lack of detailed specifications, and we need to conduct additional research to provide evidence. Also, the heterogeneity of recommendations across different CPGs presents a challenge in establishing consistent clinical guidelines. Future research should focus on generating high-quality evidence and standardizing treatment regimens to support more robust recommendations for BVA in TKM clinical practice.
Collapse
Affiliation(s)
- Minjung Park
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Seungwon Shin
- College of Korean Medicine, Sangji University, Wonju 26339, Republic of Korea
| |
Collapse
|
2
|
Juhaniewicz-Debinska J. Melittin-Induced Structural Transformations in DMPG and DMPS Lipid Membranes: A Langmuir Monolayer and AFM Study. Molecules 2024; 29:6064. [PMID: 39770152 PMCID: PMC11677270 DOI: 10.3390/molecules29246064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
In this study, we explore the interactions between melittin, a cationic antimicrobial peptide, and model lipid membranes composed of the negatively charged phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) and 1,2-dimyristoyl-sn-glycero-3-phosphoserine (DMPS). Using the Langmuir monolayer technique and atomic force microscopy (AFM), we reveal novel insights into these interactions. Our key finding is the observation of the ripple phase in the DMPS bilayer on mica, a phenomenon not previously reported for negatively charged single bilayers. This discovery is significant given the critical role of phosphatidylserine (PS) in cancer biology and the potential of melittin as an anticancer agent. We also highlight the importance of subphase composition, as melittin interacts preferentially with lipids in the liquid-condensed phase; thus, selecting the appropriate subphase composition is crucial because it affects lipid behavior and consequently melittin interactions. Our results show that melittin incorporates into lipid monolayers in both liquid-expanded and liquid-condensed phases, enhancing membrane fluidity and disorder, but is expelled from DMPS in the solid phase. AFM imaging further reveals that melittin induces substantial structural changes in the DMPG membrane and forms the ripple phase in the DMPS bilayers. Despite these alterations, melittin does not cause pore formation or membrane rupture, suggesting strong electrostatic adsorption on the membrane surface that prevents penetration. These findings highlight the differential impacts of melittin on lipid monolayers and bilayers and underscore its potential for interacting with membranes without causing disruption.
Collapse
Affiliation(s)
- Joanna Juhaniewicz-Debinska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
3
|
Sadek KM, Shib NA, Taher ES, Rashed F, Shukry M, Atia GA, Taymour N, El-Nablaway M, Ibrahim AM, Ramadan MM, Abdelkader A, Abdo M, Imbrea I, Pet E, Ali LS, Abdeen A. Harnessing the power of bee venom for therapeutic and regenerative medical applications: an updated review. Front Pharmacol 2024; 15:1412245. [PMID: 39092234 PMCID: PMC11291246 DOI: 10.3389/fphar.2024.1412245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
Honeybees have been helpful insects since ancient centuries, and this benefit is not limited to being a honey producer only. After the bee stings a person, pain, and swelling occur in this place, due to the effects of bee venom (BV). This is not a poison in the total sense of the word because it has many benefits, and this is due to its composition being rich in proteins, peptides, enzymes, and other types of molecules in low concentrations that show promise in the treatment of numerous diseases and conditions. BV has also demonstrated positive effects against various cancers, antimicrobial activity, and wound healing versus the human immunodeficiency virus (HIV). Even though topical BV therapy is used to varying degrees among countries, localized swelling or itching are common side effects that may occur in some patients. This review provides an in-depth analysis of the complex chemical composition of BV, highlighting the diverse range of bioactive compounds and their therapeutic applications, which extend beyond the well-known anti-inflammatory and pain-relieving effects, showcasing the versatility of BV in modern medicine. A specific search strategy was followed across various databases; Web of sciences, Scopus, Medline, and Google Scholar including in vitro and in vivo clinical studies.to outline an overview of BV composition, methods to use, preparation requirements, and Individual consumption contraindications. Furthermore, this review addresses safety concerns and emerging approaches, such as the use of nanoparticles, to mitigate adverse effects, demonstrating a balanced and holistic perspective. Importantly, the review also incorporates historical context and traditional uses, as well as a unique focus on veterinary applications, setting it apart from previous works and providing a valuable resource for researchers and practitioners in the field.
Collapse
Affiliation(s)
- Kadry M. Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Naira A. Shib
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Gamal A. Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ateya M. Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port Said University, Port Said, Egypt
| | - Mahmoud M. Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ilinca Imbrea
- Department of Forestry, Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, Timisoara, Romania
| | - Elena Pet
- Department of Management and Rural Development, Faculty of Management and Rural Tourism, University of Life Sciences “King Mihai I” from Timisoara, Timisoara, Romania
| | - Lashin S. Ali
- Department of Basic Medical Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
4
|
Xu JC, Chen ZY, Huang XJ, Wu J, Huang H, Niu LF, Wang HL, Li JH, Lowrie DB, Hu Z, Lu SH, Fan XY. Multi-omics analysis reveals that linoleic acid metabolism is associated with variations of trained immunity induced by distinct BCG strains. SCIENCE ADVANCES 2024; 10:eadk8093. [PMID: 38578989 PMCID: PMC10997199 DOI: 10.1126/sciadv.adk8093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Trained immunity is one of the mechanisms by which BCG vaccination confers persistent nonspecific protection against diverse diseases. Genomic differences between the different BCG vaccine strains that are in global use could result in variable protection against tuberculosis and therapeutic effects on bladder cancer. In this study, we found that four representative BCG strains (BCG-Russia, BCG-Sweden, BCG-China, and BCG-Pasteur) covering all four genetic clusters differed in their ability to induce trained immunity and nonspecific protection. The trained immunity induced by BCG was associated with the Akt-mTOR-HIF1α axis, glycolysis, and NOD-like receptor signaling pathway. Multi-omics analysis (epigenomics, transcriptomics, and metabolomics) showed that linoleic acid metabolism was correlated with the trained immunity-inducing capacity of different BCG strains. Linoleic acid participated in the induction of trained immunity and could act as adjuvants to enhance BCG-induced trained immunity, revealing a trained immunity-inducing signaling pathway that could be used in the adjuvant development.
Collapse
Affiliation(s)
- Jin-Chuan Xu
- Shanghai Public Health Clinical Center and Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Zhen-Yan Chen
- Shanghai Public Health Clinical Center and Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Xue-Jiao Huang
- Shanghai Public Health Clinical Center and Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Juan Wu
- Shanghai Public Health Clinical Center and Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Huan Huang
- Shanghai Public Health Clinical Center and Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, Guangdong Province, China
| | - Liang-Fei Niu
- Shanghai Public Health Clinical Center and Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Hui-Ling Wang
- Shanghai Public Health Clinical Center and Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Jian-Hui Li
- Shanghai Public Health Clinical Center and Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Douglas B. Lowrie
- Shanghai Public Health Clinical Center and Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, Guangdong Province, China
| | - Zhidong Hu
- Shanghai Public Health Clinical Center and Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Shui-hua Lu
- Shanghai Public Health Clinical Center and Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, Guangdong Province, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center and Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
5
|
Huang S, Su G, Jiang S, Chen L, Huang J, Yang F. New N-Terminal Fatty-Acid-Modified Melittin Analogs with Potent Biological Activity. Int J Mol Sci 2024; 25:867. [PMID: 38255940 PMCID: PMC10815238 DOI: 10.3390/ijms25020867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Melittin, a natural antimicrobial peptide, has broad-spectrum antimicrobial activity. This has resulted in it gaining increasing attention as a potential antibiotic alternative; however, its practical use has been limited by its weak antimicrobial activity, high hemolytic activity, and low proteolytic stability. In this study, N-terminal fatty acid conjugation was used to develop new melittin-derived lipopeptides (MDLs) to improve the characteristics of melittin. Our results showed that compared with native melittin, the antimicrobial activity of MDLs was increased by 2 to 16 times, and the stability of these MDLs against trypsin and pepsin degradation was increased by 50 to 80%. However, the hemolytic activity of the MDLs decreased when the length of the carbon chain of fatty acids exceeded 10. Among the MDLs, the newly designed analog Mel-C8 showed optimal antimicrobial activity and protease stability. The antimicrobial mechanism studied revealed that the MDLs showed a rapid bactericidal effect by interacting with lipopolysaccharide (LPS) or lipoteichoic acid (LTA) and penetrating the bacterial cell membrane. In conclusion, we designed and synthesized a new class of MDLs with potent antimicrobial activity, high proteolytic stability, and low hemolytic activity through N-terminal fatty acid conjugation.
Collapse
Affiliation(s)
- Sheng Huang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (L.C.)
| | - Guoqi Su
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (L.C.)
| | - Shan Jiang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (L.C.)
| | - Li Chen
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (L.C.)
| | - Jinxiu Huang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (L.C.)
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
| | - Feiyun Yang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (L.C.)
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
| |
Collapse
|