1
|
Chmelová Ľ, Kraeva N, Saura A, Krayzel A, Vieira CS, Ferreira TN, Soares RP, Bučková B, Galan A, Horáková E, Vojtková B, Sádlová J, Malysheva MN, Butenko A, Prokopchuk G, Frolov AO, Lukeš J, Horváth A, Škodová-Sveráková I, Feder D, Yu Kostygov A, Yurchenko V. Intricate balance of dually-localized catalase modulates infectivity of Leptomonas seymouri (Kinetoplastea: Trypanosomatidae). Int J Parasitol 2024; 54:391-400. [PMID: 38663543 DOI: 10.1016/j.ijpara.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/24/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Nearly all aerobic organisms are equipped with catalases, powerful enzymes scavenging hydrogen peroxide and facilitating defense against harmful reactive oxygen species. In trypanosomatids, this enzyme was not present in the common ancestor, yet it had been independently acquired by different lineages of monoxenous trypanosomatids from different bacteria at least three times. This observation posited an obvious question: why was catalase so "sought after" if many trypanosomatid groups do just fine without it? In this work, we analyzed subcellular localization and function of catalase in Leptomonas seymouri. We demonstrated that this enzyme is present in the cytoplasm and a subset of glycosomes, and that its cytoplasmic retention is H2O2-dependent. The ablation of catalase in this parasite is not detrimental in vivo, while its overexpression resulted in a substantially higher parasite load in the experimental infection of Dysdercus peruvianus. We propose that the capacity of studied flagellates to modulate the catalase activity in the midgut of its insect host facilitates their development and protects them from oxidative damage at elevated temperatures.
Collapse
Affiliation(s)
- Ľubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Natalya Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Adam Krayzel
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Cecilia Stahl Vieira
- Universidade Federal Fluminense, Instituto de Biologia, Programa de Pós-Graduação em Ciências e Biotecnologia, Niterói, Brazil
| | - Tainá Neves Ferreira
- Universidade Federal Fluminense, Instituto de Biologia, Programa de Pós-Graduação em Ciências e Biotecnologia, Niterói, Brazil
| | - Rodrigo Pedro Soares
- Biotechnology Applied to Pathogens (BAP), Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Barbora Bučková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Arnau Galan
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Eva Horáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Barbora Vojtková
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Marina N Malysheva
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia; Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia; Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Alexander O Frolov
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia; Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Ingrid Škodová-Sveráková
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia; Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Denise Feder
- Universidade Federal Fluminense, Instituto de Biologia, Programa de Pós-Graduação em Ciências e Biotecnologia, Niterói, Brazil; Universidade Federal Fluminense, Instituto de Biologia, Laboratório de Biologia de Insetos, Niterói, Brazil; Instituto Nacional de Entomologia Molecular, Rio de Janeiro, Brazil
| | - Alexei Yu Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia; Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia.
| |
Collapse
|
2
|
Jyotisha, Qureshi R, Qureshi IA. Development of a multi-epitope vaccine candidate for leishmanial parasites applying immunoinformatics and in vitro approaches. Front Immunol 2023; 14:1269774. [PMID: 38035118 PMCID: PMC10684680 DOI: 10.3389/fimmu.2023.1269774] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease, and its severity necessitates the development of a potent and efficient vaccine for the disease; however, no human vaccine has yet been approved for clinical use. This study aims to design and evaluate a multi-epitope vaccine against the leishmanial parasite by utilizing helper T-lymphocyte (HTL), cytotoxic T-lymphocyte (CTL), and linear B-lymphocyte (LBL) epitopes from membrane-bound acid phosphatase of Leishmania donovani (LdMAcP). The designed multi-epitope vaccine (LdMAPV) was highly antigenic, non-allergenic, and non-toxic, with suitable physicochemical properties. The three-dimensional structure of LdMAPV was modeled and validated, succeeded by molecular docking and molecular dynamics simulation (MDS) studies that confirmed the high binding affinity and stable interactions between human toll-like receptors and LdMAPV. In silico disulfide engineering provided improved stability to LdMAPV, whereas immune simulation displayed the induction of both immune responses, i.e., antibody and cell-mediated immune responses, with a rise in cytokines. Furthermore, LdMAPV sequence was codon optimized and cloned into the pET-28a vector, followed by its expression in a bacterial host. The recombinant protein was purified using affinity chromatography and subjected to determine its effect on cytotoxicity, cytokines, and nitric oxide generation by mammalian macrophages. Altogether, this report provides a multi-epitope vaccine candidate from a leishmanial protein participating in parasitic virulence that has shown its potency to be a promising vaccine candidate against leishmanial parasites.
Collapse
Affiliation(s)
- Jyotisha
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Rahila Qureshi
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
3
|
Poláková E, Albanaz ATS, Zakharova A, Novozhilova TS, Gerasimov ES, Yurchenko V. Ku80 is involved in telomere maintenance but dispensable for genomic stability in Leishmania mexicana. PLoS Negl Trop Dis 2021; 15:e0010041. [PMID: 34965251 PMCID: PMC8716037 DOI: 10.1371/journal.pntd.0010041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/30/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Telomeres are indispensable for genome stability maintenance. They are maintained by the telomere-associated protein complex, which include Ku proteins and a telomerase among others. Here, we investigated a role of Ku80 in Leishmania mexicana. Leishmania is a genus of parasitic protists of the family Trypanosomatidae causing a vector-born disease called leishmaniasis. METHODOLOGY/PRINCIPAL FINDINGS We used the previously established CRISPR/Cas9 system to mediate ablation of Ku80- and Ku70-encoding genes in L. mexicana. Complete knock-outs of both genes were confirmed by Southern blotting, whole-genome Illumina sequencing, and RT-qPCR. Resulting telomeric phenotypes were subsequently investigated using Southern blotting detection of terminal restriction fragments. The genome integrity in the Ku80- deficient cells was further investigated by whole-genome sequencing. Our work revealed that telomeres in the ΔKu80 L. mexicana are elongated compared to those of the wild type. This is a surprising finding considering that in another model trypanosomatid, Trypanosoma brucei, they are shortened upon ablation of the same gene. A telomere elongation phenotype has been documented in other species and associated with a presence of telomerase-independent alternative telomere lengthening pathway. Our results also showed that Ku80 appears to be not involved in genome stability maintenance in L. mexicana. CONCLUSION/SIGNIFICANCE Ablation of the Ku proteins in L. mexicana triggers telomere elongation, but does not have an adverse impact on genome integrity.
Collapse
Affiliation(s)
- Ester Poláková
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Amanda T. S. Albanaz
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Alexandra Zakharova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | | | - Evgeny S. Gerasimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| |
Collapse
|
4
|
Sádlová J, Podešvová L, Bečvář T, Bianchi C, Gerasimov ES, Saura A, Glanzová K, Leštinová T, Matveeva NS, Chmelová Ľ, Mlacovská D, Spitzová T, Vojtková B, Volf P, Yurchenko V, Kraeva N. Catalase impairs Leishmania mexicana development and virulence. Virulence 2021; 12:852-867. [PMID: 33724149 PMCID: PMC7971327 DOI: 10.1080/21505594.2021.1896830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
Catalase is one of the most abundant enzymes on Earth. It decomposes hydrogen peroxide, thus protecting cells from dangerous reactive oxygen species. The catalase-encoding gene is conspicuously absent from the genome of most representatives of the family Trypanosomatidae. Here, we expressed this protein from the Leishmania mexicana Β-TUBULIN locus using a novel bicistronic expression system, which relies on the 2A peptide of Teschovirus A. We demonstrated that catalase-expressing parasites are severely compromised in their ability to develop in insects, to be transmitted and to infect mice, and to cause clinical manifestation in their mammalian host. Taken together, our data support the hypothesis that the presence of catalase is not compatible with the dixenous life cycle of Leishmania, resulting in loss of this gene from the genome during the evolution of these parasites.
Collapse
Affiliation(s)
- Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lucie Podešvová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Tomáš Bečvář
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Claretta Bianchi
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | | | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Kristýna Glanzová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Nadezhda S. Matveeva
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Ľubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Denisa Mlacovská
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Tatiana Spitzová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Vojtková
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Natalya Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
5
|
Freitas-Mesquita AL, Dos-Santos ALA, Meyer-Fernandes JR. Involvement of Leishmania Phosphatases in Parasite Biology and Pathogeny. Front Cell Infect Microbiol 2021; 11:633146. [PMID: 33968798 PMCID: PMC8100340 DOI: 10.3389/fcimb.2021.633146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/06/2021] [Indexed: 01/01/2023] Open
Abstract
In the Leishmania lifecycle, the motile promastigote form is transmitted from the sand fly vector to a mammalian host during a blood meal. Inside vertebrate host macrophages, the parasites can differentiate into the amastigote form and multiply, causing leishmaniasis, one of the most significant neglected tropical diseases. Leishmania parasites face different conditions throughout their development inside sand flies. Once in the mammalian host, the parasites have to overcome the microbicide repertoire of the cells of the immune system to successfully establish the infection. In this context, the expression of protein phosphatases is of particular interest. Several members of the serine/threonine-specific protein phosphatase (STP), protein tyrosine phosphatase (PTP), and histidine acid phosphatase (HAcP) families have been described in different Leishmania species. Although their physiological roles have not been fully elucidated, many studies suggest they have an involvement with parasite biology and pathogeny. Phosphatases play a role in adaptation to nutrient starvation during parasite passage through the sand fly midgut. They are also important to parasite virulence, mainly due to the modulation of host cytokine production and impairment of the microbiocidal potential of macrophages. Furthermore, recent whole-genome expression analyses have shown that different phosphatases are upregulated in metacyclic promastigotes, the infective form of the mammalian host. Leishmania phosphatases are also upregulated in drug-resistant strains, probably due to the increase in drug efflux related to the activation of ABC transporters. Throughout this review, we will describe the physiological roles that have been attributed to Leishmania endogenous phosphatases, including their involvement in the adaptation, survival, and proliferation of the parasites inside their hosts.
Collapse
Affiliation(s)
- Anita Leocadio Freitas-Mesquita
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luiz Araújo Dos-Santos
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Papadaki A, Tziouvara O, Kotopouli A, Koumarianou P, Doukas A, Rios P, Tardieux I, Köhn M, Boleti H. The Leishmania donovani LDBPK_220120.1 Gene Encodes for an Atypical Dual Specificity Lipid-Like Phosphatase Expressed in Promastigotes and Amastigotes; Substrate Specificity, Intracellular Localizations, and Putative Role(s). Front Cell Infect Microbiol 2021; 11:591868. [PMID: 33842381 PMCID: PMC8027504 DOI: 10.3389/fcimb.2021.591868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
The intracellular protozoan parasites of the Leishmania genus are responsible for Leishmaniases, vector borne diseases with a wide range of clinical manifestations. Leishmania (L.) donovani causes visceral leishmaniasis (kala azar), the most severe of these diseases. Along their biological cycle, Leishmania parasites undergo distinct developmental transitions including metacyclogenesis and differentiation of metacyclic promastigotes (MPs) to amastigotes. Metacyclogenesis inside the phlebotomine sandfly host's midgut converts the procyclic dividing promastigotes to non-dividing infective MPs eventually injected into the skin of mammalian hosts and phagocytosed by macrophages where the MPs are converted inside modified phagolysosomes to the intracellular amastigotes. These developmental transitions involve dramatic changes in cell size and shape and reformatting of the flagellum requiring thus membrane and cytoskeleton remodeling in which phosphoinositide (PI) signaling and metabolism must play central roles. This study reports on the LDBPK_220120.1 gene, the L. donovani ortholog of LmjF.22.0250 from L. major that encodes a phosphatase from the "Atypical Lipid Phosphatases" (ALPs) enzyme family. We confirmed the expression of the LDBPK_220120.1 gene product in both L. donovani promastigotes and axenic amastigotes and showed that it behaves in vitro as a Dual Specificity P-Tyr and monophosphorylated [PI(3)P and PI(4)P] PI phosphatase and therefore named it LdTyrPIP_22 (Leishmaniad onovani Tyrosine PI Phosphatase, gene locus at chromosome 22). By immunofluorescence confocal microscopy we localized the LdTyrPIP_22 in several intracellular sites in the cell body of L. donovani promastigotes and amastigotes and in the flagellum. A temperature and pH shift from 25°C to 37°C and from pH 7 to 5.5, induced a pronounced recruitment of LdTyrPIP_22 epitopes to the flagellar pocket and a redistribution around the nucleus. These results suggest possible role(s) for this P-Tyr/PI phosphatase in the regulation of processes initiated or upregulated by this temperature/pH shift that contribute to the developmental transition from MPs to amastigotes inside the mammalian host macrophages.
Collapse
Affiliation(s)
- Amalia Papadaki
- Intracellular Parasitism Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Olympia Tziouvara
- Intracellular Parasitism Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Anastasia Kotopouli
- Intracellular Parasitism Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Petrina Koumarianou
- Intracellular Parasitism Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece.,Light Microscopy Unit, Hellenic Pasteur Institute, Athens, Greece
| | - Anargyros Doukas
- Intracellular Parasitism Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Pablo Rios
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Isabelle Tardieux
- Team «Biomechanics of Host Parasite Interactions», Institut for Advanced BioSciences, Univ. Grenoble Alpes, Inserm U1209 - CNRS UMR 5309, 38700 La Tronche, France
| | - Maja Köhn
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Haralabia Boleti
- Intracellular Parasitism Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece.,Light Microscopy Unit, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
7
|
Genome Analysis of Endotrypanum and Porcisia spp., Closest Phylogenetic Relatives of Leishmania, Highlights the Role of Amastins in Shaping Pathogenicity. Genes (Basel) 2021; 12:genes12030444. [PMID: 33804709 PMCID: PMC8004069 DOI: 10.3390/genes12030444] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
While numerous genomes of Leishmania spp. have been sequenced and analyzed, an understanding of the evolutionary history of these organisms remains limited due to the unavailability of the sequence data for their closest known relatives, Endotrypanum and Porcisia spp., infecting sloths and porcupines. We have sequenced and analyzed genomes of three members of this clade in order to fill this gap. Their comparative analyses revealed only minute differences from Leishmaniamajor genome in terms of metabolic capacities. We also documented that the number of genes under positive selection on the Endotrypanum/Porcisia branch is rather small, with the flagellum-related group of genes being over-represented. Most significantly, the analysis of gene family evolution revealed a substantially reduced repertoire of surface proteins, such as amastins and biopterin transporters BT1 in the Endotrypanum/Porcisia species when compared to amastigote-dwelling Leishmania. This reduction was especially pronounced for δ-amastins, a subfamily of cell surface proteins crucial in the propagation of Leishmania amastigotes inside vertebrate macrophages and, apparently, dispensable for Endotrypanum/Porcisia, which do not infect such cells.
Collapse
|
8
|
Alcoforado Diniz J, Chaves MM, Vaselek S, Miserani Magalhães RD, Ricci-Azevedo R, de Carvalho RVH, Lorenzon LB, Ferreira TR, Zamboni D, Walrad PB, Volf P, Sacks DL, Cruz AK. Protein methyltransferase 7 deficiency in Leishmania major increases neutrophil associated pathology in murine model. PLoS Negl Trop Dis 2021; 15:e0009230. [PMID: 33651805 PMCID: PMC7954300 DOI: 10.1371/journal.pntd.0009230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/12/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Leishmania major is the main causative agent of cutaneous leishmaniasis in the Old World. In Leishmania parasites, the lack of transcriptional control is mostly compensated by post-transcriptional mechanisms. Methylation of arginine is a conserved post-translational modification executed by Protein Arginine Methyltransferase (PRMTs). The genome from L. major encodes five PRMT homologs, including the cytosolic protein associated with several RNA-binding proteins, LmjPRMT7. It has been previously reported that LmjPRMT7 could impact parasite infectivity. In addition, a more recent work has clearly shown the importance of LmjPRMT7 in RNA-binding capacity and protein stability of methylation targets, demonstrating the role of this enzyme as an important epigenetic regulator of mRNA metabolism. In this study, we unveil the impact of PRMT7-mediated methylation on parasite development and virulence. Our data reveals that higher levels of LmjPRMT7 can impair parasite pathogenicity, and that deletion of this enzyme rescues the pathogenic phenotype of an attenuated strain of L. major. Interestingly, lesion formation caused by LmjPRMT7 knockout parasites is associated with an exacerbated inflammatory reaction in the tissue correlated with an excessive neutrophil recruitment. Moreover, the absence of LmjPRMT7 also impairs parasite development within the sand fly vector Phlebotomus duboscqi. Finally, a transcriptome analysis shed light onto possible genes affected by depletion of this enzyme. Taken together, this study highlights how post-transcriptional regulation can affect different aspects of the parasite biology. Understanding the genetics of Leishmania, a protozoan parasite causing leishmaniasis, is relevant for understanding fundamental questions on the pathogen’s biology and its interaction with hosts. We explore mechanisms used by Leishmania to promptly adapt to different hosts investigating the control of gene expression occurring at the post-transcriptional level in the parasite. Methylation of arginine performed by Protein Arginine Methyltransferase (PRMTs), among other post-translational modifications, may alter the function and interactions of target proteins, some of them are RNA binding proteins, known regulators of gene expression. In this study, we unveil the impact of PRMT7 on parasite development and pathogenicity. In addition to a negative correlation between the levels of LmjPRMT7 and parasite pathogenicity, we observed an impairment of the parasite development in the sand fly vector. Remarkably, despite a severe lesion development in mice, we observed no differences in parasite burden between infections with the pathogenic LmjPRMT7 knockout parasite or the attenuated parental line. Instead, the severe pathology observed is associated with an exacerbated inflammatory response correlated with excessive neutrophil recruitment.
Collapse
Affiliation(s)
- Juliana Alcoforado Diniz
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mariana M. Chaves
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Slavica Vaselek
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - Rubens D. Miserani Magalhães
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Ricci-Azevedo
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renan V. H. de Carvalho
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucas B. Lorenzon
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tiago R. Ferreira
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Dario Zamboni
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Petr Volf
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - David L. Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Angela K. Cruz
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
9
|
Abstract
Telomeres are the ends of linear eukaryotic chromosomes facilitating the resolution of the ‘end replication and protection’ problems, associated with linearity. At the nucleotide level, telomeres typically represent stretches of tandemly arranged telomeric repeats, which vary in length and sequence among different groups of organisms. Recently, a composition of the telomere-associated protein complex has been scrutinized in Trypanosoma brucei. In this work, we subjected proteins from that list to a more detailed bioinformatic analysis and delineated a core set of 20 conserved proteins putatively associated with telomeres in trypanosomatids. Out of these, two proteins (Ku70 and Ku80) are conspicuously missing in representatives of the genus Blastocrithidia, yet telomeres in these species do not appear to be affected. In this work, based on the analysis of a large set of trypanosomatids widely different in their phylogenetic position and life strategies, we demonstrated that telomeres of trypanosomatids are diverse in length, even within groups of closely related species. Our analysis showed that the expression of two proteins predicted to be associated with telomeres (those encoding telomerase and telomere-associated hypothetical protein orthologous to Tb927.6.4330) may directly affect and account for the differences in telomere length within the species of the Leishmania mexicana complex.
Collapse
|
10
|
Durante IM, Butenko A, Rašková V, Charyyeva A, Svobodová M, Yurchenko V, Hashimi H, Lukeš J. Large-Scale Phylogenetic Analysis of Trypanosomatid Adenylate Cyclases Reveals Associations with Extracellular Lifestyle and Host-Pathogen Interplay. Genome Biol Evol 2020; 12:2403-2416. [PMID: 33104188 PMCID: PMC7719234 DOI: 10.1093/gbe/evaa226] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Receptor adenylate cyclases (RACs) on the surface of trypanosomatids are important players in the host–parasite interface. They detect still unidentified environmental signals that affect the parasites’ responses to host immune challenge, coordination of social motility, and regulation of cell division. A lesser known class of oxygen-sensing adenylate cyclases (OACs) related to RACs has been lost in trypanosomes and expanded mostly in Leishmania species and related insect-dwelling trypanosomatids. In this work, we have undertaken a large-scale phylogenetic analysis of both classes of adenylate cyclases (ACs) in trypanosomatids and the free-living Bodo saltans. We observe that the expanded RAC repertoire in trypanosomatids with a two-host life cycle is not only associated with an extracellular lifestyle within the vertebrate host, but also with a complex path through the insect vector involving several life cycle stages. In Trypanosoma brucei, RACs are split into two major clades, which significantly differ in their expression profiles in the mammalian host and the insect vector. RACs of the closely related Trypanosoma congolense are intermingled within these two clades, supporting early RAC diversification. Subspecies of T. brucei that have lost the capacity to infect insects exhibit high numbers of pseudogenized RACs, suggesting many of these proteins have become redundant upon the acquisition of a single-host life cycle. OACs appear to be an innovation occurring after the expansion of RACs in trypanosomatids. Endosymbiont-harboring trypanosomatids exhibit a diversification of OACs, whereas these proteins are pseudogenized in Leishmania subgenus Viannia. This analysis sheds light on how ACs have evolved to allow diverse trypanosomatids to occupy multifarious niches and assume various lifestyles.
Collapse
Affiliation(s)
- Ignacio Miguel Durante
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
| | - Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia.,Life Science Research Centre, Faculty of Science, University of Ostrava, Czechia
| | - Vendula Rašková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czechia
| | - Arzuv Charyyeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Czechia
| | - Michaela Svobodová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Czechia.,Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russian Federation
| | - Hassan Hashimi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czechia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czechia
| |
Collapse
|
11
|
Bespyatykh J, Shitikov E, Bespiatykh D, Guliaev A, Klimina K, Veselovsky V, Arapidi G, Dogonadze M, Zhuravlev V, Ilina E, Govorun V. Metabolic Changes of Mycobacterium tuberculosis during the Anti-Tuberculosis Therapy. Pathogens 2020; 9:pathogens9020131. [PMID: 32085490 PMCID: PMC7168336 DOI: 10.3390/pathogens9020131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis complex bacteria, remains one of the most pressing health problems. Despite the general trend towards reduction of the disease incidence rate, the situation remains extremely tense due to the distribution of the resistant forms. Most often, these strains emerge through the intra-host microevolution of the pathogen during treatment failure. In the present study, the focus was on three serial clinical isolates of Mycobacterium tuberculosis Beijing B0/W148 cluster from one patient with pulmonary tuberculosis, to evaluate their changes in metabolism during anti-tuberculosis therapy. Using whole genome sequencing (WGS), 9 polymorphisms were determined, which occurred in a stepwise or transient manner during treatment and were linked to the resistance (GyrA D94A; inhA t-8a) or virulence. The effect of the inhA t-8a mutation was confirmed on both proteomic and transcriptomic levels. Additionally, the amount of RpsL protein, which is a target of anti-tuberculosis drugs, was reduced. At the systemic level, profound changes in metabolism, linked to the evolution of the pathogen in the host and the effects of therapy, were documented. An overabundance of the FAS-II system proteins (HtdX, HtdY) and expression changes in the virulence factors have been observed at the RNA and protein levels.
Collapse
Affiliation(s)
- Julia Bespyatykh
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (D.B.); (A.G.); (K.K.); (V.V.); (G.A.); (E.I.); (V.G.)
- Correspondence: (J.B.); (E.S.)
| | - Egor Shitikov
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (D.B.); (A.G.); (K.K.); (V.V.); (G.A.); (E.I.); (V.G.)
- Correspondence: (J.B.); (E.S.)
| | - Dmitry Bespiatykh
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (D.B.); (A.G.); (K.K.); (V.V.); (G.A.); (E.I.); (V.G.)
| | - Andrei Guliaev
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (D.B.); (A.G.); (K.K.); (V.V.); (G.A.); (E.I.); (V.G.)
| | - Ksenia Klimina
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (D.B.); (A.G.); (K.K.); (V.V.); (G.A.); (E.I.); (V.G.)
| | - Vladimir Veselovsky
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (D.B.); (A.G.); (K.K.); (V.V.); (G.A.); (E.I.); (V.G.)
| | - Georgij Arapidi
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (D.B.); (A.G.); (K.K.); (V.V.); (G.A.); (E.I.); (V.G.)
- Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Marine Dogonadze
- Research Institute of Phtisiopulmonology, 191036 St. Petersburg, Russia; (M.D.); (V.Z.)
| | - Viacheslav Zhuravlev
- Research Institute of Phtisiopulmonology, 191036 St. Petersburg, Russia; (M.D.); (V.Z.)
| | - Elena Ilina
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (D.B.); (A.G.); (K.K.); (V.V.); (G.A.); (E.I.); (V.G.)
| | - Vadim Govorun
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (D.B.); (A.G.); (K.K.); (V.V.); (G.A.); (E.I.); (V.G.)
| |
Collapse
|
12
|
Podešvová L, Leštinová T, Horáková E, Lukeš J, Volf P, Yurchenko V. Suicidal Leishmania. Pathogens 2020; 9:pathogens9020079. [PMID: 31991768 PMCID: PMC7168676 DOI: 10.3390/pathogens9020079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
Leishmania are obligate intracellular parasites known to have developed successful ways of efficient immunity evasion. Because of this, leishmaniasis, a disease caused by these flagellated protists, is ranked as one of the most serious tropical infections worldwide. Neither prophylactic medication, nor vaccination has been developed thus far, even though the infection has usually led to strong and long-lasting immunity. In this paper, we describe a “suicidal” system established in Leishmania mexicana, a human pathogen causing cutaneous leishmaniasis. This system is based on the expression and (de)stabilization of a basic phospholipase A2 toxin from the Bothrops pauloensis snake venom, which leads to the inducible cell death of the parasites in vitro. Furthermore, the suicidal strain was highly attenuated during macrophage infection, regardless of the toxin stabilization. Such a deliberately weakened parasite could be used to vaccinate the host, as its viability is regulated by the toxin stabilization, causing a profoundly reduced pathogenesis.
Collapse
Affiliation(s)
- Lucie Podešvová
- Life Science Research Centre and Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Eva Horáková
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre and Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia
- Correspondence: ; Tel.: +420-597-092-326
| |
Collapse
|