1
|
Ai L, Qi Y, Hu Y, Zhu C, Liu K, Li F, Ye F, Dai H, Wu Y, Kuai Q, Nie D, Shan L, Zhang Y, Wang C, Tan W. The epidemiological and infectious characteristics of novel types of Coxiella burnetii co-infected with Coxiella-like microorganisms from Xuyi County, Jiangsu province, China. BMC Infect Dis 2024; 24:1041. [PMID: 39333956 PMCID: PMC11430510 DOI: 10.1186/s12879-024-09924-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Coxiella burnetii (C. burnetii) is the causative agent of Q fever, a type of zoonoses withwidespread distribution. In 2019, a case of Q fever was diagnosed by metagenomic next-generation sequencing (mNGS) method in Xuyi County (Jiangsu province, China). The seroprevalence of previous fever patients and the molecular epidemiology of Coxiella in wild hedgehogs and harbouring ticks around the confirmed patient were detected to reveal the genetic characteristics and pathogenicity of the Coxiella strains. Four of the 90 serum samples (4.44%) were positive for specific C. burnetii IgM antibody, suggesting that local humans are at risk of Q fever. The positive rates of C. burnetii in hedgehogs and ticks were 21.9% (7/32) and 70.5% (122/173), respectively. At least 3 strains of Coxiella were found prevalent in the investigated area, including one new genotype of pathogenic C. burnetii (XYHT29) and two non-pathogenic Coxiella-like organisms (XYHT19 and XYHT3). XYHT29 carried by ticks and wild hedgehogs successfully infected mice, imposing a potential threat to local humans. XYHT19, a novel Coxiella-like microorganism, was first discovered in the world to co-infect with C. burnetii in Haemaphysalis flava. The study provided significant epidemic information that could be used for prevention and control strategies against Q fever for local public health departments and medical institutions.
Collapse
Affiliation(s)
- Lele Ai
- Nanjing Bioengineer (Gene) Center for Medicines, Nanjing, China
| | - Yong Qi
- Nanjing Bioengineer (Gene) Center for Medicines, Nanjing, China
| | - Yue Hu
- Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Changqiang Zhu
- Nanjing Bioengineer (Gene) Center for Medicines, Nanjing, China
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Kangle Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Feng Li
- Yancheng Center for Disease Control and Prevention, Yancheng, China
| | - Fuqiang Ye
- Nanjing Bioengineer (Gene) Center for Medicines, Nanjing, China
| | - Han Dai
- Eastern Theater General Hospital, Nanjing, China
| | - Yifan Wu
- Nanjing Bioengineer (Gene) Center for Medicines, Nanjing, China
| | - Qiyuan Kuai
- Nanjing Bioengineer (Gene) Center for Medicines, Nanjing, China
| | - Danyue Nie
- Nanjing Bioengineer (Gene) Center for Medicines, Nanjing, China
| | - Laiyou Shan
- Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Yan Zhang
- Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Changjun Wang
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Weilong Tan
- Nanjing Bioengineer (Gene) Center for Medicines, Nanjing, China.
| |
Collapse
|
2
|
Mathioudaki E, Alifragis Y, Fouskaki M, Chochlakis D, Xie H, Psaroulaki A, Tsiotis G, Chaniotakis N. Electrochemical antigenic sensor for the diagnosis of chronic Q fever. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
3
|
Jeske R, Dangel L, Sauerbrey L, Frangoulidis D, Teras LR, Fischer SF, Waterboer T. Development of High-Throughput Multiplex Serology to Detect Serum Antibodies against Coxiella burnetii. Microorganisms 2021; 9:microorganisms9112373. [PMID: 34835498 PMCID: PMC8623512 DOI: 10.3390/microorganisms9112373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
The causative agent of Q fever, the bacterium Coxiella burnetii (C. burnetii), has gained increasing interest due to outbreak events and reports about it being a potential risk factor for the development of lymphomas. In order to conduct large-scale studies for population monitoring and to investigate possible associations more closely, accurate and cost-effective high-throughput assays are highly desired. To address this need, nine C. burnetii proteins were expressed as recombinant antigens for multiplex serology. This technique enables the quantitative high-throughput detection of antibodies to multiple antigens simultaneously in a single reaction. Based on a reference group of 76 seropositive and 91 seronegative sera, three antigens were able to detect C. burnetii infections. Com1, GroEL, and DnaK achieved specificities of 93%, 69%, and 77% and sensitivities of 64%, 72%, and 47%, respectively. Double positivity to Com1 and GroEL led to a combined specificity of 90% and a sensitivity of 71%. In a subgroup of seropositives with an increased risk for chronic Q fever, the double positivity to these markers reached a specificity of 90% and a sensitivity of 86%. Multiplex serology enables the detection of antibodies against C. burnetii and appears well-suited to investigate associations between C. burnetii infections and the clinical manifestations in large-scale studies.
Collapse
Affiliation(s)
- Rima Jeske
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (L.S.); (T.W.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Correspondence:
| | - Larissa Dangel
- German National Consiliary Laboratory of Coxiella burnetii, 70191 Stuttgart, Germany; (L.D.); (S.F.F.)
- State Health Office Baden-Württemberg, 70565 Stuttgart, Germany
| | - Leander Sauerbrey
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (L.S.); (T.W.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Dimitrios Frangoulidis
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany;
- Bundeswehr Medical Service Headquarters VI-2, Medical Intelligence & Information (MI2), 80637 Munich, Germany
| | - Lauren R. Teras
- Department of Population Science, American Cancer Society, Atlanta, GA 30303-1002, USA;
| | - Silke F. Fischer
- German National Consiliary Laboratory of Coxiella burnetii, 70191 Stuttgart, Germany; (L.D.); (S.F.F.)
- State Health Office Baden-Württemberg, 70565 Stuttgart, Germany
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (L.S.); (T.W.)
| |
Collapse
|
4
|
Identification of Immunogenic Linear B-Cell Epitopes in C. burnetii Outer Membrane Proteins Using Immunoinformatics Approaches Reveals Potential Targets of Persistent Infections. Pathogens 2021; 10:pathogens10101250. [PMID: 34684199 PMCID: PMC8540810 DOI: 10.3390/pathogens10101250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Coxiella burnetii is a global, highly infectious intracellular bacterium, able to infect a wide range of hosts and to persist for months in the environment. It is the etiological agent of Q fever—a zoonosis of global priority. Currently, there are no national surveillance data on C. burnetii’s seroprevalence for any South American country, reinforcing the necessity of developing novel and inexpensive serological tools to monitor the prevalence of infections among humans and animals—especially cattle, goats, and sheep. In this study, we used immunoinformatics and computational biology tools to predict specific linear B-cell epitopes in three C. burnetii outer membrane proteins: OMP-H (CBU_0612), Com-1 (CBU_1910), and OMP-P1 (CBU_0311). Furthermore, predicted epitopes were tested by ELISA, as synthetic peptides, against samples of patients reactive to C. burnetii in indirect immunofluorescence assay, in order to evaluate their natural immunogenicity. In this way, two linear B-cell epitopes were identified in each studied protein (OMP-H(51–59), OMP-H(91–106), Com-1(57–76), Com-1(191–206), OMP-P1(197–209), and OMP-P1(215–227)); all of them were confirmed as naturally immunogenic by the presence of specific antibodies in 77% of studied patients against at least one of the identified epitopes. Remarkably, a higher frequency of endocarditis cases was observed among patients who presented an intense humoral response to OMP-H and Com-1 epitopes. These data confirm that immunoinformatics applied to the identification of specific B-cell epitopes can be an effective strategy to improve and accelerate the development of surveillance tools against neglected diseases.
Collapse
|
5
|
Mathioudaki E, Arvaniti K, Muenke C, Drakonaki A, Vranakis I, Koutantou M, Psaroulaki A, Xie H, Tsiotis G. Expression, purification and characterization of the IcmG and IcmK proteins of the type IVB secretion system from Coxiella burnetii. Protein Expr Purif 2021; 186:105905. [PMID: 33989770 DOI: 10.1016/j.pep.2021.105905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/15/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Coxiella burnetii, the causative agent of Q fever, is an intracellular bacterial pathogen. Studies on Coxiella have shown that a type IVB secretion system (T4BSS) contributes to the establishment of the infection by transferring protein molecules. In this report, we focus on two core proteins of the Coxiella T4BSS, namely the IcmG/DotF protein (CBU_1626) and the IcmK/DotH protein (CBU_1628). Here we present a method for the recombinant expression of IcmG and IcmK in E. coli. IcmG was purified by Strep-Tactin affinity chromatography and size exclusion chromatography, while for the purification of IcmK an additional anion exchange chromatography step was introduced. The yields of the purified IcmG and IcmK proteins were 1.2 mg/L and 3 mg/L, respectively. The purified proteins showed predominant band on SDS-PAGE gel of 37 kDa for the IcmG and 40 kDa for the IcmK. Protein folding is confirmed by circular dichroism spectroscopy. The dynamic light scattering experiment indicated that IcmG and IcmK existed in a homogenous form. Further Blue native PAGE indicates the presences of a monomeric form for the IcmK and IcmG. Our work lays the basis for functional exploration and structural determination of IcmG and IcmK proteins of Coxiella's secretion system.
Collapse
Affiliation(s)
- Eirini Mathioudaki
- Division of Biochemistry, Department of Chemistry, University of Crete, GR-71003, Voutes, Greece
| | - Katerina Arvaniti
- Division of Biochemistry, Department of Chemistry, University of Crete, GR-71003, Voutes, Greece
| | - Cornelia Muenke
- Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, D-60438, Frankfurt am Main, Germany
| | - Athina Drakonaki
- Division of Biochemistry, Department of Chemistry, University of Crete, GR-71003, Voutes, Greece
| | - Iosif Vranakis
- Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, Medical School, University of Crete, GR-71110, Heraklion, Greece
| | - Myrto Koutantou
- Division of Biochemistry, Department of Chemistry, University of Crete, GR-71003, Voutes, Greece
| | - Anna Psaroulaki
- Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, Medical School, University of Crete, GR-71110, Heraklion, Greece
| | - Hao Xie
- Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, D-60438, Frankfurt am Main, Germany.
| | - Georgios Tsiotis
- Division of Biochemistry, Department of Chemistry, University of Crete, GR-71003, Voutes, Greece.
| |
Collapse
|
6
|
Ledda S, Santucciu C, Chisu V, Masala G. Validation of a Novel Commercial ELISA Test for the Detection of Antibodies against Coxiella burnetii. Pathogens 2020; 9:pathogens9121075. [PMID: 33371440 PMCID: PMC7767449 DOI: 10.3390/pathogens9121075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 11/24/2022] Open
Abstract
Q fever is a zoonosis caused by Coxiella burnetii, a Gram-negative pathogen with a complex life cycle and a high impact on public and animal health all over the world. The symptoms are indistinguishable from those belonging to other diseases, and the disease could be symptomless. For these reasons, reliable laboratory tests are essential for an accurate diagnosis. The aim of this study was to validate a novel enzyme-linked immunosorbent assay (ELISA) test, named the Chorus Q Fever Phase II IgG and IgM Kit (DIESSE, Diagnostica Senese S.p.A), which is performed by an instrument named Chorus, a new device in medical diagnostics. This diagnostic test is employed for the detection of antibodies against C. burnetii Phase II antigens in acute disease. Our validation protocol was performed according to the Italian Accreditation Body (ACCREDIA) (Regulation UNI CEI EN ISO/IEC 17025:2018 and 17043:2010), OIE (World Organization for Animal Health), and Statement for Reporting Studies of Diagnostic Accuracy (STARD). Operator performance was evaluated along with the analytical specificity and sensitivity (ASp and ASe) and diagnostic accuracy of the kit, with parameters such as diagnostic specificity and sensitivity (DSp and DSe) and positive and negative predictive values (PPV and NPV), in addition to the repeatability. According to the evaluated parameters, the diagnostic ELISA test was shown to be suitable for validation and commercialization as a screening method in human sera and a valid support for clinical diagnostics.
Collapse
|
7
|
Psaroulaki A, Mathioudaki E, Vranakis I, Chochlakis D, Yachnakis E, Kokkini S, Xie H, Tsiotis G. In the Search of Potential Serodiagnostic Proteins to Discriminate Between Acute and Chronic Q Fever in Humans. Some Promising Outcomes. Front Cell Infect Microbiol 2020; 10:557027. [PMID: 33072625 PMCID: PMC7531360 DOI: 10.3389/fcimb.2020.557027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Coxiella burnetii is the agent that causes acute and chronic Q fever infections in humans. Although the isolates studied so far have shown that the two forms of the disease differ in virulence potential thus, implying a variance in their proteomic profile, the methods used do not deliver enough discriminatory capability and often, human infections may be mis-diagnosed. The current study adds further knowledge to the results that we have already published on the Coxiella outer membrane protein 1 (Com1). Herein we identified the proteins GroEL, Ybgf, OmpH, and UPF0422 as candidates for serodiagnostics of Q fever; following cloning, expression and purification they were further used as antigens in ELISA for the screening of patients' sera associated with chronic Q fever endocarditis, sera negative for phase I IgG, sera with at least one sample positive for phase I IgG and sera from patients who suffered from various rheumatic diseases. Blood donors were used as the controls. Sensitivity, specificity, positive predictive value, negative predictive value, and Cohen's kappa coefficient (κ) were calculated and we also performed binary logistic regression analysis to identify combinations of proteins with increased diagnostic yield. We found that proteins GroEL and Ybgf, together with Com1, play the most significant role in the correct diagnosis of chronic Q fever. Of these three proteins, it was shown that Com1 and GroEL present the highest sensitivity and specificity altogether. The results add to the existing knowledge that an antigen-based serodiagnostic test that will be able to correctly diagnose chronic Q fever may not be far from reality.
Collapse
Affiliation(s)
- Anna Psaroulaki
- Department of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Greece
| | - Eirini Mathioudaki
- Laboratory of Biochemistry, Department of Chemistry, School of Science and Engineering, University of Crete, Heraklion, Greece
| | - Iosif Vranakis
- Department of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Greece
| | - Dimosthenis Chochlakis
- Department of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Greece
| | - Emmanouil Yachnakis
- Unit of Biomedical Data Analysis, Department of Mother and Child Health, University of Crete, Heraklion, Greece
| | - Sofia Kokkini
- Department of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Greece
| | - Hao Xie
- Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Georgios Tsiotis
- Laboratory of Biochemistry, Department of Chemistry, School of Science and Engineering, University of Crete, Heraklion, Greece
| |
Collapse
|
8
|
Evaluation of the Diagnostic Potential of Recombinant Coxiella burnetii Com1 in an ELISA for the Diagnosis of Q Fever in Sheep, Goats and Cattle. Microorganisms 2020; 8:microorganisms8081235. [PMID: 32823774 PMCID: PMC7465334 DOI: 10.3390/microorganisms8081235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Coxiella burnetii is the causative agent of Q fever, a zoonosis infecting domestic ruminants and humans. Currently used routine diagnostic tools offer limited sensitivity and specificity and symptomless infected animals may be missed. Therefore, diagnostic tools of higher sensitivity and specificity must be developed. For this purpose, the C. burnetii outer membrane protein Com1 was cloned and expressed in Escherichia coli. The His-tagged recombinant protein was purified and used in an indirect enzyme-linked immunosorbent assay (ELISA). Assay performance was tested with more than 400 positive and negative sera from sheep, goats and cattle from 36 locations. Calculation of sensitivity and specificity was undertaken using receiver operating characteristic (ROC) curves. The sensitivities and specificities for sheep were 85% and 68% (optical density at 450nm, OD450 cut-off value 0.32), for goats 94% and 77% (OD450 cut-off value 0.23) and for cattle 71% and 70% (OD450 cut-off value 0.18), respectively. These results correspond to excellent, outstanding and acceptable discrimination of positive and negative sera. In summary, recombinant Com1 can provide a basis for more sensitive and specific diagnostic tools in veterinary medicine.
Collapse
|