1
|
Jibril SM, Hu Y, Yang K, Wu J, Li C, Wang Y. Microbiome Analysis of Area in Proximity to White Spot Lesions Reveals More Harmful Plant Pathogens in Maize. Biomolecules 2025; 15:252. [PMID: 40001555 PMCID: PMC11853329 DOI: 10.3390/biom15020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Plant microbiomes play a major role in plant health, growth, and development, enhancing resistance to pathogen invasion. However, despite the extensive research on the phyllosphere microbiome, it remains unclear how the microbiome of leaves in proximity to diseased leaves responds to pathogen invasion. We investigate the response of the maize phyllosphere microbiome to maize white spot by assessing the microbiome dynamics associated with the white spot portion and the area in proximity using 16S and ITS high-throughput sequencing analysis. Our results showed that the bacterial diversities were higher in the diseased portion and area in proximity to the spot than those in healthy plants. At the same time, lower fungal diversity was recorded in the diseased portion compared to portions in proximity to it and healthy leaves. The spot portion had a significant influence on the microbial composition. The diseased portion, the area in proximity to it, and the healthy leaves were dominated by the bacterial genera Sphingomonas, Delftia, Chryseobacterium, Stenotrophomonas, Methylobacterium-methylorubrum, and Bacteroides. Still, the abundance of Sphingomonas decreased in the healthy leaves with a corresponding increase in Stenotrophomonas. Conversely, the fungal genus Setophoma dominated the diseased portion, while the fungal pathogens Cladosporium, Alternaria, and Exserohilum were highly abundant in the samples from the area in proximity to it. In addition, a co-occurrence network analysis revealed a complex fungal network in healthy leaves and those in proximity to leaves infected with white spot compared to the diseased portion. This study suggests that the area in proximity to the maize leaf infected with white spot disease is colonized by more harmful plant pathogenic fungi for disease progression.
Collapse
Affiliation(s)
- Sauban Musa Jibril
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (S.M.J.); (Y.H.); (K.Y.); (J.W.)
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| | - Yanping Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (S.M.J.); (Y.H.); (K.Y.); (J.W.)
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| | - Kexin Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (S.M.J.); (Y.H.); (K.Y.); (J.W.)
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| | - Jie Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (S.M.J.); (Y.H.); (K.Y.); (J.W.)
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (S.M.J.); (Y.H.); (K.Y.); (J.W.)
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| | - Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (S.M.J.); (Y.H.); (K.Y.); (J.W.)
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
2
|
Xie S, Li H, Lu J, Li J, Song Z, Jiang H. A Novel Member of miR169 Family Negatively Regulates Maize Resistance Against Bipolaris maydis. PLANT DISEASE 2024; 108:3518-3526. [PMID: 38982675 DOI: 10.1094/pdis-02-24-0398-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
MicroRNAs (miRNAs) have been confirmed to play important roles in plant defense response. However, the key maize miRNAs involved in the defense response against Bipolaris maydis are very limited. In this study, a novel member of the miR169 family in response to B. maydis, named zma-miR169s, was discovered and investigated. The expression levels of pre-miR169s and zma-miR169s were significantly repressed during B. maydis infection. The CRISPR/Cas9-induced zma-miR169s mutant exhibited more resistance against B. maydis, whereas overexpression of zma-miR169s enhanced susceptibility, supporting that zma-miR169s might play a negative role in maize resistance. Moreover, RNA-seq and Gene Ontology analysis showed that differentially expressed genes were highly enriched in the oxidation-reduction process and plant hormone pathway. Hence, reactive oxygen species (ROS) and plant hormone levels were further investigated. ROS detection confirmed that the zma-miR169s mutant accumulated more ROS, while less ROS was detected in transgenic maize OE-miR169s. Furthermore, more remarkable changes in PR-1 expression levels and salicylic acid (SA) contents were detected in the zma-miR169s mutant compared with wild-type and transgenic maize during B. maydis infection. Additionally, nuclear transcription factors (NF-YA1 and NF-YA13) were identified as targets regulated by zma-miR169s through the agrobacterium-mediated transient expression method. Overexpression of ZmNF-YA13 enhanced Arabidopsis resistance to Pseudomonas syringae pv. tomato DC3000. Taken together, our results suggest that zma-miR169s negatively regulates maize defense responses by influencing ROS accumulation and the SA-dependent signaling pathway.
Collapse
Affiliation(s)
- Shanshan Xie
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Han Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Jiale Lu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Jing Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Zheng Song
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
3
|
Muniz PHPC, de Oliveira TAS, Duarte EAA, Rodrigues F, Carvalho DDC. Characterization of Bipolaris bicolor germination: effects of a physical factor on fungal adaptability. Braz J Microbiol 2024; 55:3521-3528. [PMID: 39320638 PMCID: PMC11711407 DOI: 10.1007/s42770-024-01520-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Studies on physiological responses to stimuli from physical factors are essential for understanding the dynamics of the microorganisms and higly important for the management of plant diseases. Besides, the development of an epidemiological model for pathogen populations requires studying their physiological responses to physical stimuli. The objective of this study was to evaluate the germination dynamics of spores from six isolates of Bipolaris bicolor under effects of light at 25 °C. Suspensions of 1.6 × 105 conidia mL- 1 from the B. bicolor isolates were inoculated onto Petri dishes containing agar-water culture medium and incubated in a BOD chamber under two physical conditions: (a) constant darkness and (b) constant light for five hours. The study was conducted in a completely randomized design, with a 6 × 2 factorial arrangement (six B. bicolor isolates and two physical conditions) and five replications. The length of the germ tube was measured hourly. The constant darkness resulted in higher mean germ tube growth for the pathogen; however, differences in the final germination percentage were found among the isolates. The isolate F-24-02 exhibited the highest germination adaptability to constant darkness, presenting the longest germ tube length.
Collapse
|
4
|
Yang R, Li Y, Zhao H, Sun X, Chen W, Li P, Li X, Wu C, Ma M, Gong G. Identification and Characterization of Colletotrichum Species Associated with Maize in Sichuan, China. J Fungi (Basel) 2024; 10:799. [PMID: 39590718 PMCID: PMC11595826 DOI: 10.3390/jof10110799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Colletotrichum species are the most common cause of maize anthracnose, which often manifests as leaf spots. However, field observations often reveal symptoms similar to those caused by other leaf spot pathogens, such as Curvularia and Bipolaris. In this study, 99 isolates were identified using tissue separation and single-spore isolation techniques. As preliminary measures of species diversity, all 99 isolates were identified morphologically, and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene sequences were phylogenetically analyzed. Furthermore, 48 representative strains were selected for molecular identification using multi-locus phylogenetic analyses based on five gene loci (ITS, TUB, ACT, GAPDH, and CAL). Finally, 10 species of Colletotrichum isolated from maize leaf spots were identified. Colletotrichum cliviicola was the most dominant species (24.2%), followed by C. fructicola (18.2%), C. karstii (16.1%), C. siamense (13.1%), C. boninense (7.1%), C. kahawae (7.1%), C. brevisporum (6.1%), C. truncatum (5.1%), C. gigasporum (2.0%), and C. gloeosporioides (1.0%). For the first time, pathogenicity tests revealed that C. cliviicola, C. fructicola, C. siamense, C. karstii, and C. truncatum are the causative agents of maize anthracnose. Additionally, C. boninense was identified as an endophytic fungus on healthy maize. In conclusion, this study is the first to identify the pathogen of maize anthracnose in Sichuan Province. It provides valuable insights for accurately diagnosing and managing maize anthracnose.
Collapse
Affiliation(s)
- Rui Yang
- Plan Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (R.Y.); (Y.L.); (H.Z.); (W.C.); (P.L.); (X.L.); (C.W.); (M.M.)
| | - Ying Li
- Plan Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (R.Y.); (Y.L.); (H.Z.); (W.C.); (P.L.); (X.L.); (C.W.); (M.M.)
| | - Henan Zhao
- Plan Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (R.Y.); (Y.L.); (H.Z.); (W.C.); (P.L.); (X.L.); (C.W.); (M.M.)
| | - Xiaofang Sun
- Industrial Crops Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, China;
| | - Wen Chen
- Plan Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (R.Y.); (Y.L.); (H.Z.); (W.C.); (P.L.); (X.L.); (C.W.); (M.M.)
| | - Pan Li
- Plan Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (R.Y.); (Y.L.); (H.Z.); (W.C.); (P.L.); (X.L.); (C.W.); (M.M.)
| | - Xuehu Li
- Plan Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (R.Y.); (Y.L.); (H.Z.); (W.C.); (P.L.); (X.L.); (C.W.); (M.M.)
| | - Cuiping Wu
- Plan Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (R.Y.); (Y.L.); (H.Z.); (W.C.); (P.L.); (X.L.); (C.W.); (M.M.)
| | - Miaomiao Ma
- Plan Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (R.Y.); (Y.L.); (H.Z.); (W.C.); (P.L.); (X.L.); (C.W.); (M.M.)
| | - Guoshu Gong
- Plan Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (R.Y.); (Y.L.); (H.Z.); (W.C.); (P.L.); (X.L.); (C.W.); (M.M.)
| |
Collapse
|
5
|
Shen Y, Chen C, Zhao Z, Liang Y, Li Q, Xia X, Wu P, He F, Tong Q, Zhu H, Zhang Y. Bipoladien A, a Sesterterpenoid Containing an Undescribed 5/8/5/7 Carbon Skeleton from Bipolaris maydis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3549-3559. [PMID: 38325810 DOI: 10.1021/acs.jafc.3c08134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Bipoladiens A-E (1-5), five new ophiobolin-derived sesterterpenoids, and a known compound 6 (bipolaricin R) were isolated from the cultures of the phytopathogenic fungus Bipolaris maydis. Their structures and absolute configurations were elucidated based on comprehensive spectroscopic analyses, HRESIMS, electronic circular dichroism (ECD) calculations, and single-crystal X-ray diffraction analyses. Notably, compound 1 has an undescribed tetracyclic 5/8/5/7 fused carbon skeleton, and compound 2 possesses a rare multicyclic caged ring system. The biosynthetic pathway of 1 was proposed starting from 6 via a series of oxidation and cyclization reactions. Compound 6 showed excellent antiproliferation and apoptosis induction effects against A549 cell line. Additionally, compounds 5 and 6 exhibited noticeable antimicrobial ability against Bacillus cereus, Staphylococcus aureus, and Staphylococcus epidermidis. These findings not only developed the chemical and bioactivities diversities of ophiobolin-sesterterpenoid but also provided an idea to boost the application of natural products in the control of food pathogens.
Collapse
Affiliation(s)
- Yong Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ziming Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yu Liang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xian Xia
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Science, Hubei Normal University, Huangshi 435002, People's Republic of China
| | - Peng Wu
- Hubei Topgene Biotechnology Technical Research Institute Co., Ltd., Wuhan 430064, People's Republic of China
| | - Feng He
- Hubei Topgene Biotechnology Technical Research Institute Co., Ltd., Wuhan 430064, People's Republic of China
| | - Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
6
|
Ferreira CM, Saluci JCG, Vivas M, Santos JS, de Andrade Junior MS, Vivas JMS, Ramos GKS, Graviana GA. Characterization of the Bipolaris maydis: symptoms and pathogenicity in popcorn genotypes (Zea mays L.). BRAZ J BIOL 2024; 84:e256799. [DOI: 10.1590/1519-6984.256799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022] Open
Abstract
Abstract Southern corn leaf blight (SCLB) is one of the most important corn leaf diseases. Appropriate management strategies and the use of resistant cultivars allow disease control. Therefore, knowing the aspects related to the pathogen and the response of hosts makes it possible to design efficient strategies for selecting genotypes resistant to this disease. In this sense, the objective was to carry out the Bipolaris maydis isolate characterization, evaluating the pathogenicity in different popcorn lines and the symptoms generated in the host after inoculation. The isolate characterization consisted of the macromorphological evaluation of the colonies and the micromorphological evaluation of the conidia in the PDA medium. An experiment was carried out in a greenhouse to evaluate the pathogenicity of the isolate, using 20 inbred lines of popcorn in a randomized block design with four replicates. Inoculation was carried out by spraying leaves, with a suspension containing 1.0 x 104 conidia.ml-1 of the CF/UENF 501 isolate of B. maydis. An incidence assessment and three assessments of disease symptom severity were performed, with seven days intervals between evaluations. The morphological characterization data of the isolate were analyzed using descriptive statistics, and for disease severity, the linear regression model was applied the first-degree model. The variance analysis was performed for the linear and angular coefficients obtained for each treatment. When a difference was found, the Scott-Knott clustering algorithm at 5% significance was applied. The isolate had gray-green colonies, a cottony appearance, and an irregular shape. The lines L353, L354, and L624 show more resistance at the beginning and throughout the evaluations. The high virulence of the CF/UENF 501 isolate made it possible to differentiate the lines in terms of disease intensity and the pattern of symptoms presented.
Collapse
Affiliation(s)
- C. M. Ferreira
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brasil
| | - J. C. G. Saluci
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brasil
| | - M. Vivas
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brasil
| | - J. S. Santos
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brasil
| | | | - J. M. S. Vivas
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brasil
| | - G. K. S. Ramos
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brasil
| | - G. A. Graviana
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brasil
| |
Collapse
|
7
|
de Morais JS, Cabral L, Bezerril FF, Uhlmann LO, Dos Santos Lima M, Noronha MF, Dos Santos SA, Madruga MS, Olegario LS, Wagner R, Sant'Ana AS, Magnani M. Farming system impacts the bioactive compounds, microbial diversity, aroma and color in edible red mini-roses (Rosa chinensis Jacq.). Food Res Int 2023; 173:113233. [PMID: 37803548 DOI: 10.1016/j.foodres.2023.113233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 10/08/2023]
Abstract
Mini-roses (Rosa chinensis Jacq.) is largely used in salty dishes and desserts. This study evaluated instrumental color, sugars, organic acids, phenolics, volatiles, and the indigenous microbiota (fungi and bacteria) in edible mini-roses farmed in discarded fruits biocompost and animal manure systems. A descriptive sensory analysis of flowers was also performed. Mini-roses farmed in biocompost had higher luminosity and intensity of instrumental red color, a higher concentration of phenolic compounds, including anthocyanins related to red color, and fructose than mini-roses farmed in animal manure (p < 0.05). Furthermore, mini-roses farmed in biocompost had higher concentrations of various volatiles (p < 0.05), including hexyl acetate and cis-3 -hexenyl butyrate related to the fruity aroma. Bacterial groups related to plant growth-promoting such as Stenotrophomonas and endophilic fungal groups such as Eurotiales sp, Pleosporales sp were found in higher abundance (p < 0.05) in mini-roses farmed in biocompost. Mini-rose farmed in biocompost also received higher score (p < 0.05) for fruity aroma and red color than mini-rose mini-roses farmed in animal manure. Results indicate that farming mini-roses using biocompost from discarded fruits impacts the synthesis of phenolics and volatiles, resulting in a more intense fruity aroma and red color. Findings also suggest that the microbiota of mini-roses farmed in biocompost or animal manure do not represent a major risk for the safety of these products.
Collapse
Affiliation(s)
- Janne Santos de Morais
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Paraíba, Brazil
| | - Lucélia Cabral
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Paraíba, Brazil
| | - Fabricia França Bezerril
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Paraíba, Brazil
| | - Lilian Osmari Uhlmann
- Department of Phytotechnics, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina, Pernambuco, Brazil
| | - Melline F Noronha
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Silvana Alves Dos Santos
- Empresa Paraibana de Abastecimento e Serviços Agrícolas - EMPASA, João Pessoa, Paraíba 58071-000, Brazil
| | - Marta Suely Madruga
- Laboratory of Flavor Analysis, Department of Food Engineering, Center of Technology, Federal University of Paraíba, João Pessoa, Brazil
| | - Lary Souza Olegario
- Laboratory of Flavor Analysis, Department of Food Engineering, Center of Technology, Federal University of Paraíba, João Pessoa, Brazil
| | - Roger Wagner
- Department of Food Science Technology, Federal University Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, State of São Paulo, Brazil
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Paraíba, Brazil.
| |
Collapse
|
8
|
Sun J, Pang C, Cheng X, Yang B, Jin B, Jin L, Qi Y, Sun Y, Chen X, Liu W, Cao H, Chen Y. Investigation of the antifungal activity of the dicarboximide fungicide iprodione against Bipolaris maydis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 190:105319. [PMID: 36740339 DOI: 10.1016/j.pestbp.2022.105319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Southern corn leaf blight (SCLB), mainly caused by Bipolaris maydis, is a destructive disease of maize worldwide. Iprodione is a widely used dicarboximide fungicide (DCF); however, its antifungal activity against B. maydis has not been well studied until now. In this study, the sensitivity of 103 B. maydis isolates to iprodione was determined, followed by biochemistry and physiology assays to ascertain the fungicide's effect on the morphology and other biological properties of B. maydis. The results indicated that iprodione exhibited strong inhibitory activity against B. maydis, and the EC50 values in inhibiting mycelial growth ranged from 0.088 to 1.712 μg/mL, with a mean value of 0.685 ± 0.687 μg/mL. After treatment with iprodione, conidial production of B. maydis was decreased significantly, and the mycelia branches increased with obvious shrinkage, distortion and fracture. Moreover, the expression levels of the osmotic pressure-related regulation genes histidine kinase (hk) and Ssk2-type mitogen-activated protein kinase (ssk2) were upregulated, the glycerin content of mycelia increased significantly, the relative conductivity of mycelia increased, and the cell wall membrane integrity was destroyed. The in vivo assay showed that iprodione at 200 μg/mL provided 79.16% protective efficacy and 90.92% curative efficacy, suggesting that the curative effect was better than the protective effect. All these results proved that iprodione exhibited strong inhibitory activity against B. maydis and provided excellent efficacy in controlling SCLB, indicating that iprodione could be an alternative candidate for the control of SCLB in China.
Collapse
Affiliation(s)
- Jiazhi Sun
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Chaoyue Pang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xin Cheng
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Bingyun Yang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Bingbing Jin
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Ling Jin
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yongxia Qi
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yang Sun
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xing Chen
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Yu Chen
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
9
|
Mao L, Ge L, Ye X, Xu L, Si W, Ding T. ZmGLP1, a Germin-like Protein from Maize, Plays an Important Role in the Regulation of Pathogen Resistance. Int J Mol Sci 2022; 23:ijms232214316. [PMID: 36430797 PMCID: PMC9699084 DOI: 10.3390/ijms232214316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022] Open
Abstract
A gene encoding a protein similar to germin-like proteins (GLPs) was obtained from maize (Zea mays) and designated as ZmGLP1. Based on the ZmGLP1 conserved domain and phylogenetic status, ZmGLP1 was grouped into GLP subfamily b and has high similarity to OsGLP8-14 from Oryza sativa. ZmGLP1 is expressed in different maize tissues during different growth stages and is mainly expressed in the stems and leaves. The induced expression patterns confirmed that ZmGLP1 is differentially expressed under abiotic and hormone stress; it had an early response to jasmonic acid (JA) and ethephon (ET) but a late response to salicylic acid (SA) and was significantly upregulated under Bipolaris maydis infection. The overexpression of ZmGLP1 in Arabidopsis improved the resistance to biotrophic Pseudomonas syringae pv. tomato DC3000 (PstDC3000) and necrotrophic Sclerotinia sclerotiorum by inducing the expression of JA signaling-related genes. Moreover, the hydrogen peroxide (H2O2) content increased due to the overexpression of ZmGLP1 in Arabidopsis after pathogen infection. Compared to the wild-type control, the H2O2 content of ZmGLP1-overexpressing Arabidopsis infected by PstDC3000 increased significantly but was lower in transgenic plants infected with S. sclerotiorum. Furthermore, high-performance liquid chromatography-tandem mass (HPLC-MS/MS) spectrometry showed that the JA contents of ZmGLP1-overexpressing Arabidopsis markedly increased after pathogen infection. However, the improved resistance of ZmGLP1-overexpressing Arabidopsis pretreated with the JA biosynthetic inhibitor, sodium diethyldithiocarbamate trihydrate (DIECA), was suppressed. Based on these findings, we speculate that ZmGLP1 plays an important role in the regulation of Arabidopsis resistance to biotrophic PstDC3000 and necrotrophic S. sclerotiorum; the regulatory effects are achieved by inducing plant oxidative burst activity and activation of the JA signaling pathway.
Collapse
Affiliation(s)
- Lixue Mao
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Lijie Ge
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xinchun Ye
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Li Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Weina Si
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Ting Ding
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Correspondence: or ; Tel.: +86-551-6578-6464; Fax: +86-551-6578-6021
| |
Collapse
|
10
|
Shabana YM, Ghoneem KM, Rashad YM, Arafat NS, Fitt BDL, Richard B, Qi A. Distribution and Biodiversity of Seed-Borne Pathogenic and Toxigenic Fungi of Maize in Egypt and Their Correlations with Weather Variables. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11182347. [PMID: 36145747 PMCID: PMC9506050 DOI: 10.3390/plants11182347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 05/23/2023]
Abstract
Studies of the biodiversity of plant pathogenic and toxigenic fungi are attracting great attention to improve the predictability of their epidemics and the development of their control programs. Two hundred maize grain samples were gathered from 25 maize-growing governorates in Egypt and 189 samples were processed for the isolation and identification of seed-borne fungal microbiome. Twenty-six fungal genera comprising 42 species were identified according to their morphological characteristics and ITS DNA sequence analysis. Occurrence and biodiversity indicators of these fungal species were calculated. Ustilago maydis, Alternaria alternata, Aspergillus flavus, A. niger, Penicillium spp., Cladosporium spp. and Fusarium verticillioides were the highly frequent (>90% for each), recording the highest relative abundance (˃50%). Al-Menia governorate showed the highest species diversity and richness, followed by Sohag, Al-Nobaria and New Valley governorates. Correlations of 18 fungal species with temperature, relative humidity, precipitation, wind speed, and solar radiation were analyzed using canonical correspondence analysis. Results showed that relative humidity, temperature, and wind speed, respectively, were the most impactful weather variables. However, the occurrence and distribution of these fungi were not clearly grouped into the distinctive climatic regions in which maize crops are grown. Monitoring the occurrence and distribution of the fungal pathogens of maize grains in Egypt will play an important role in predicting their outbreaks and developing appropriate future management strategies. The findings in this study may be useful to other maize-growing countries that have similar climatic conditions.
Collapse
Affiliation(s)
- Yasser M. Shabana
- Plant Pathology Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Khalid M. Ghoneem
- Department of Seed Pathology Research, Plant Pathology Research Institute, Agricultural Research Center, Giza 12112, Egypt
| | - Younes M. Rashad
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21500, Egypt
| | - Nehal S. Arafat
- Plant Pathology Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Bruce D. L. Fitt
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, Hertfordsire, UK
| | - Benjamin Richard
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, Hertfordsire, UK
| | - Aiming Qi
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, Hertfordsire, UK
| |
Collapse
|
11
|
Yu H, Ruan H, Xia X, Chicowski AS, Whitham SA, Li Z, Wang G, Liu W. Maize FERONIA-like receptor genes are involved in the response of multiple disease resistance in maize. MOLECULAR PLANT PATHOLOGY 2022; 23:1331-1345. [PMID: 35596601 PMCID: PMC9366073 DOI: 10.1111/mpp.13232] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/10/2022] [Accepted: 04/30/2022] [Indexed: 05/04/2023]
Abstract
Receptor-like kinases (RLKs) are key modulators of diverse cellular processes such as development and sensing the extracellular environment. FERONIA, a member of the CrRLK1L subfamily, acts as a pleiotropic regulator of plant immune responses, but little is known about how maize FERONIA-like receptors (FLRs) function in responding to the major foliar diseases of maize such as northern corn leaf blight (NLB), northern corn leaf spot (NLS), anthracnose stalk rot (ASR), and southern corn leaf blight (SLB). Here, we identified three ZmFLR homologous proteins that showed cell membrane localization. Transient expression in Nicotiana benthamiana proved that ZmFLRs were capable of inducing cell death. To investigate the role of ZmFLRs in maize, we used virus-induced gene silencing to knock down expression of ZmFLR1/2 and ZmFLR3 resulting in reduced reactive oxygen species production induced by flg22 and chitin. The resistance of maize to NLB, NLS, ASR, and SLB was also reduced in the ZmFLRs knockdown maize plants. These results indicate that ZmFLRs are positively involved in broad-spectrum disease resistance in maize.
Collapse
Affiliation(s)
- Haiyue Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of AgricultureAgriculture Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Hongchun Ruan
- Institute of Plant ProtectionFujian Academy of Agricultural SciencesFuzhouChina
| | - Xinyao Xia
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | | | - Steven A. Whitham
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIowaUSA
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of AgricultureAgriculture Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
12
|
Manzar N, Kashyap AS, Maurya A, Rajawat MVS, Sharma PK, Srivastava AK, Roy M, Saxena AK, Singh HV. Multi-Gene Phylogenetic Approach for Identification and Diversity Analysis of Bipolaris maydis and Curvularia lunata Isolates Causing Foliar Blight of Zea mays. J Fungi (Basel) 2022; 8:802. [PMID: 36012790 PMCID: PMC9410300 DOI: 10.3390/jof8080802] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/08/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Bipolaris species are known to be important plant pathogens that commonly cause leaf spot, root rot, and seedling blight in a wide range of hosts worldwide. In 2017, complex symptomatic cases of maydis leaf blight (caused by Bipolaris maydis) and maize leaf spot (caused by Curvularia lunata) have become increasingly significant in the main maize-growing regions of India. A total of 186 samples of maydis leaf blight and 129 maize leaf spot samples were collected, in 2017, from 20 sampling sites in the main maize-growing regions of India to explore the diversity and identity of this pathogenic causal agent. A total of 77 Bipolaris maydis isolates and 74 Curvularia lunata isolates were screened based on morphological and molecular characterization and phylogenetic analysis based on ribosomal markers-nuclear ribosomal DNA (rDNA) internal transcribed spacer (ITS) region, 28S nuclear ribosomal large subunit rRNA gene (LSU), D1/D2 domain of large-subunit (LSU) ribosomal DNA (rDNA), and protein-coding gene-glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Due to a dearth of molecular data from ex-type cultures, the use of few gene regions for species resolution, and overlapping morphological features, species recognition in Bipolaris has proven difficult. The present study used the multi-gene phylogenetic approach for proper identification and diversity of geographically distributed B. maydis and C. lunata isolates in Indian settings and provides useful insight into and explanation of its quantitative findings.
Collapse
Affiliation(s)
- Nazia Manzar
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunathbhanjan 275103, India; (M.V.S.R.); (P.K.S.)
| | - Abhijeet Shankar Kashyap
- Molecular Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunathbhanjan 275103, India
| | - Avantika Maurya
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Mahendra Vikram Singh Rajawat
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunathbhanjan 275103, India; (M.V.S.R.); (P.K.S.)
| | - Pawan Kumar Sharma
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunathbhanjan 275103, India; (M.V.S.R.); (P.K.S.)
| | - Alok Kumar Srivastava
- Microbial Technology Unit I, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunathbhanjan 275103, India;
| | - Manish Roy
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunathbhanjan 275103, India; (M.R.); (A.K.S.); (H.V.S.)
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunathbhanjan 275103, India; (M.R.); (A.K.S.); (H.V.S.)
| | - Harsh Vardhan Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunathbhanjan 275103, India; (M.R.); (A.K.S.); (H.V.S.)
| |
Collapse
|
13
|
Ma Q, Geng Y, Li Q, Cheng C, Zang R, Guo Y, Wu H, Xu C, Zhang M. Comparative mitochondrial genome analyses reveal conserved gene arrangement but massive expansion/contraction in two closely related Exserohilum pathogens. Comput Struct Biotechnol J 2022; 20:1456-1469. [PMID: 35386100 PMCID: PMC8956966 DOI: 10.1016/j.csbj.2022.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/18/2023] Open
Abstract
Exserohilum turcicum and E. rostratum, two closely related fungal species, are both economically important pathogens but have quite different target hosts (specific to plants and cross-kingdom infection, respectively). In the present study, complete circular mitochondrial genomes of the two Exserohilum species were sequenced and de novo assembled, which mainly comprised the same set of 13 core protein-coding genes (PCGs), two rRNAs, and a certain number of tRNAs and unidentified open reading frames (ORFs). Comparative analyses indicated that these two fungi had significant mitogenomic collinearity and consistent mitochondrial gene arrangement, yet with vastly different mitogenome sizes, 264,948 bp and 64,620 bp, respectively. By contrast with the 17 introns containing 17 intronic ORFs (one-to-one) in the E. rostratum mitogenome, E. turcicum involved far more introns (70) and intronic ORFs (126), which was considered as the main contributing factors of their mitogenome expansion/contraction. Within the generally intron-rich gene cox1, a total of 18 and 10 intron position classes (Pcls) were identified separately in the two mitogenomes. Moreover, 16.16% and 10.85% ratios of intra-mitogenomic repetitive regions were detected in E. turcicum and E. rostratum, respectively. Based on the combined mitochondrial gene dataset, we established a well-supported topology of phylogeny tree of 98 ascomycetes, implying that mitogenomes may act as an effective molecular marker for fungal phylogenetic reconstruction. Our results served as the first report on mitogenomes in the genus Exserohilum, and would have significant implications in understanding the origin, evolution and pathogenic mechanisms of this fungal lineage.
Collapse
Affiliation(s)
- Qingzhou Ma
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yuehua Geng
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Chongyang Cheng
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Rui Zang
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yashuang Guo
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Haiyan Wu
- Analytical Instrument Center, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chao Xu
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Meng Zhang
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
14
|
Singh V, Lakshman DK, Roberts DP, Ismaiel A, Abhishek A, Kumar S, Hooda KS. Fungal Species Causing Maize Leaf Blight in Different Agro-Ecologies in India. Pathogens 2021; 10:1621. [PMID: 34959576 PMCID: PMC8705428 DOI: 10.3390/pathogens10121621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Foliar diseases of maize cause severe economic losses in India and around the world. The increasing severity of maize leaf blight (MLB) over the past ten years necessitates rigorous identification and characterization of MLB-causing pathogens from different maize production zones to ensure the success of resistance breeding programs and the selection of appropriate disease management strategies. Although Bipolaris maydis is the primary pathogen causing MLB in India, other related genera such as Curvularia, Drechslera, and Exserohilum, and a taxonomically distant genus, Alternaria, are known to infect maize in other countries. To investigate the diversity of pathogens associated with MLB in India, 350 symptomatic leaf samples were collected between 2016 and 2018, from 20 MLB hotspots in nine states representing six ecological zones where maize is grown in India. Twenty representative fungal isolates causing MLB symptoms were characterized based on cultural, pathogenic, and molecular variability. Internal Transcribed Spacer (ITS) and glyceraldehyde-3-phosphate dehydrogenase (GADPH) gene sequence-based phylogenies showed that the majority of isolates (13/20) were Bipolaris maydis. There were also two Curvularia papendorfii isolates, and one isolate each of Bipolaris zeicola, Curvularia siddiquii, Curvularia sporobolicola, an unknown Curvularia sp. isolate phylogenetically close to C. graminicola, and an Alternaria sp. isolate. The B. zeicola, the aforesaid four Curvularia species, and the Alternaria sp. are the first reports of these fungi causing MLB in India. Pathogenicity tests on maize plants showed that isolates identified as Curvularia spp. and Alternaria sp. generally caused more severe MLB symptoms than those identified as Bipolaris spp. The diversity of fungi causing MLB, types of lesions, and variation in disease severity by different isolates described in this study provide baseline information for further investigations on MLB disease distribution, diagnosis, and management in India.
Collapse
Affiliation(s)
- Vimla Singh
- Department of Botany and Plant Physiology, Chaudhary Charan Singh Haryana Agricultural University Regional Research Station, Karnal 132001, India
| | - Dilip K. Lakshman
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville, MD 20705, USA; (D.P.R.); (A.I.)
| | - Daniel P. Roberts
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville, MD 20705, USA; (D.P.R.); (A.I.)
| | - Adnan Ismaiel
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville, MD 20705, USA; (D.P.R.); (A.I.)
| | - Alok Abhishek
- ICAR-Indian Institute of Maize Research (Delhi Unit), Pusa Campus, New Delhi 110012, India;
| | - Shrvan Kumar
- Department of Mycology and Plant Pathology, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur 231001, India;
| | - Karambir S. Hooda
- Germplasm Evaluation Division, National Bureau of Plant Genetic Resources, New Delhi 110012, India;
| |
Collapse
|
15
|
Zhu M, Tong L, Xu M, Zhong T. Genetic dissection of maize disease resistance and its applications in molecular breeding. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:32. [PMID: 37309327 PMCID: PMC10236108 DOI: 10.1007/s11032-021-01219-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/25/2021] [Indexed: 06/14/2023]
Abstract
Disease resistance is essential for reliable maize production. In a long-term tug-of-war between maize and its pathogenic microbes, naturally occurring resistance genes gradually accumulate and play a key role in protecting maize from various destructive diseases. Recently, significant progress has been made in deciphering the genetic basis of disease resistance in maize. Enhancing disease resistance can now be explored at the molecular level, from marker-assisted selection to genomic selection, transgenesis technique, and genome editing. In view of the continuing accumulation of cloned resistance genes and in-depth understanding of their resistance mechanisms, coupled with rapid progress of biotechnology, it is expected that the large-scale commercial application of molecular breeding of resistant maize varieties will soon become a reality.
Collapse
Affiliation(s)
- Mang Zhu
- State Key Laboratory of Plant Physiology and Biochemistry/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 People’s Republic of China
| | - Lixiu Tong
- State Key Laboratory of Plant Physiology and Biochemistry/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 People’s Republic of China
| | - Mingliang Xu
- State Key Laboratory of Plant Physiology and Biochemistry/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 People’s Republic of China
| | - Tao Zhong
- State Key Laboratory of Plant Physiology and Biochemistry/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 People’s Republic of China
| |
Collapse
|
16
|
Liu X, Zheng X, Khaskheli MI, Sun X, Chang X, Gong G. Identification of Colletotrichum Species Associated with Blueberry Anthracnose in Sichuan, China. Pathogens 2020; 9:pathogens9090718. [PMID: 32878188 PMCID: PMC7559709 DOI: 10.3390/pathogens9090718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023] Open
Abstract
Anthracnose caused by Colletotrichum spp. is an important disease of blueberries and results in large economic losses for blueberry growers. Samples of anthracnose were collected from six main blueberry cultivation areas in Sichuan Province. In total, 74 Colletotrichum isolates were obtained through a single-spore purification method and identified to the species through morphological characteristics and phylogenetic analyses based on partial DNA sequences of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), internal transcribed spacer (ITS) regions, and the β-tubulin (TUB2), actin (ACT) and calmodulin (CAL) genes. Among all species, Colletotrichum fructicola was the most dominant species, with an isolation percentage of up to 66.2% in Sichuan, followed by Colletotrichum siamense (17.6%), C. kahawae (5.4%), C. karstii (5.4%), C. nymphaeae (2.7%) and C. sichuaninese (2.7%). Pathogenicity tests showed all species were able to cause typical anthracnose symptoms on blueberry leaves and stems. Colletotrichum fructicola was the predominant species with strong aggressiveness. Moreover, C. fructicola, C. kahawae, C. sichuaninese and C. nymphaeae are first reported here to cause blueberry anthracnose. This study provides a comprehensive reference for the association of different Colletotrichum spp., which may support the sustainable management of blueberry anthracnose.
Collapse
Affiliation(s)
- Xuan Liu
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; (X.L.); (X.Z.); (X.S.); (X.C.)
| | - Xiaojuan Zheng
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; (X.L.); (X.Z.); (X.S.); (X.C.)
| | | | - Xiaofang Sun
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; (X.L.); (X.Z.); (X.S.); (X.C.)
| | - Xiaoli Chang
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; (X.L.); (X.Z.); (X.S.); (X.C.)
| | - Guoshu Gong
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; (X.L.); (X.Z.); (X.S.); (X.C.)
- Correspondence:
| |
Collapse
|