1
|
Gervais O, Papadopoulou A, Gratacap R, Hillestad B, Tinch AE, Martin SAM, Houston RD, Robledo D. Transcriptomic response to ISAV infection in the gills, head kidney and spleen of resistant and susceptible Atlantic salmon. BMC Genomics 2022; 23:775. [PMID: 36443659 PMCID: PMC9703674 DOI: 10.1186/s12864-022-09007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Infectious Salmon Anaemia virus (ISAV) is an orthomyxovirus responsible for large losses in Atlantic salmon (Salmo salar) aquaculture. Current available treatments and vaccines are not fully effective, and therefore selective breeding to produce ISAV-resistant strains of Atlantic salmon is a high priority for the industry. Genomic selection and potentially genome editing can be applied to enhance the disease resistance of aquaculture stocks, and both approaches can benefit from increased knowledge on the genomic mechanisms of resistance to ISAV. To improve our understanding of the mechanisms underlying resistance to ISAV in Atlantic salmon we performed a transcriptomic study in ISAV-infected salmon with contrasting levels of resistance to this virus. RESULTS Three different tissues (gills, head kidney and spleen) were collected on 12 resistant and 12 susceptible fish at three timepoints (pre-challenge, 7 and 14 days post challenge) and RNA sequenced. The transcriptomes of infected and non-infected fish and of resistant and susceptible fish were compared at each timepoint. The results show that the responses to ISAV are organ-specific; an important response to the infection was observed in the head kidney, with up-regulation of immune processes such as interferon and NLR pathways, while in gills and spleen the response was more moderate. In addition to immune related genes, our results suggest that other processes such as ubiquitination and ribosomal processing are important during early infection with ISAV. Moreover, the comparison between resistant and susceptible fish has also highlighted some interesting genes related to ubiquitination, intracellular transport and the inflammasome. CONCLUSIONS Atlantic salmon infection by ISAV revealed an organ-specific response, implying differential function during the infection. An immune response was observed in the head kidney in these early timepoints, while gills and spleen showed modest responses in comparison. Comparison between resistance and susceptible samples have highlighted genes of interest for further studies, for instance those related to ubiquitination or the inflammasome.
Collapse
Affiliation(s)
- Ophélie Gervais
- grid.4305.20000 0004 1936 7988The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Athina Papadopoulou
- grid.4305.20000 0004 1936 7988The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Remi Gratacap
- grid.4305.20000 0004 1936 7988The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Alan E. Tinch
- Benchmark Genetics, Penicuik, UK ,The Center for Aquaculture Technologies, San Diego, USA
| | - Samuel A. M. Martin
- grid.7107.10000 0004 1936 7291School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Ross D. Houston
- grid.4305.20000 0004 1936 7988The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Diego Robledo
- grid.4305.20000 0004 1936 7988The Roslin Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Cárdenas M, Michelson S, Pérez DR, Montoya M, Toledo J, Vásquez-Martínez Y, Cortez-San Martin M. Infectious Salmon Anemia Virus Infectivity Is Determined by Multiple Segments with an Important Contribution from Segment 5. Viruses 2022; 14:v14030631. [PMID: 35337038 PMCID: PMC8954079 DOI: 10.3390/v14030631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Infectious salmon anemia virus (ISAV) is the etiological agent of infectious salmon anemia. It belongs to the genus isavirus, one of the genera of the Orthomyxoviridae family, as does Influenzavirus A. The ISAV genome comprises eight negative-sense single-stranded RNA segments that code for at least 10 proteins. Although some ISAV strains can reach 100% mortality rates, the factors that determine isavirus infectivity remain unknown. However, some studies suggest that segments 5 and 6 are responsible for the different degrees of virulence and infectivity among ISAV subtypes, unlike the influenza A virus, where most segments are involved in the virus infectivity. In this work, synthetic reassortant viruses for the eight segments of ISAV were generated by reverse genetics, combining a highly virulent virus, ISAV 752_09 (HPR7b), and an avirulent strain, SK779/06 (HPR0). We characterized the rescued viruses and their capacity to replicate and infect different cell lines, produce plaques in ASK cells, and their ability to induce and modulate the cellular immune response in vitro. Our results show that the majority of ISAV segments are involved in at least one of the analyzed characteristics, segment 5 being one of the most important, allowing HPR0 viruses, among other things, to produce plaques and replicate in CHSE-214 cells. We determined that segments 5 and 6 participate in different stages of the viral cycle, and their compatibility is critical for viral infection. Additionally, we demonstrated that segment 2 can modulate the cellular immune response. Our results indicate a high degree of genetic compatibility between the genomic segments of HPR7b and HPR0, representing a latent risk of reassortant that would give rise to a new virus with an unknown phenotype.
Collapse
Affiliation(s)
- Matías Cárdenas
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (M.C.); (S.M.); (Y.V.-M.)
- Poultry Diagnostic and Research Center, Department of Population Health, University of Georgia, Athens, GE 30602, USA;
| | - Sofía Michelson
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (M.C.); (S.M.); (Y.V.-M.)
| | - Daniel R. Pérez
- Poultry Diagnostic and Research Center, Department of Population Health, University of Georgia, Athens, GE 30602, USA;
| | - Margarita Montoya
- Cell Biochemistry Laboratory, Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Santiago 9170022, Chile;
| | - Jorge Toledo
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile;
| | - Yesseny Vásquez-Martínez
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (M.C.); (S.M.); (Y.V.-M.)
- Programa Centro de Investigaciones Biomédicas Aplicadas, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago, Santiago 9170022, Chile
| | - Marcelo Cortez-San Martin
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (M.C.); (S.M.); (Y.V.-M.)
- Correspondence:
| |
Collapse
|