1
|
Kularatne BMDN, Hill JE. Transformation of Gardnerella vaginalis with a Bifidobacterium-Escherichia coli shuttle vector plasmid. Microbiol Spectr 2025:e0048125. [PMID: 40207948 DOI: 10.1128/spectrum.00481-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
Gardnerella spp. significantly influence female reproductive health and are indicators of bacterial vaginosis, a common gynecological disorder. Lack of genetic tools for Gardnerella spp. is a hindrance to fully understanding their role in the vaginal microbiome, and no naturally occurring plasmids have yet been identified in these organisms. The aim of this study was to transform Gardnerella vaginalis and characterize transformants carrying Bifidobacterium-E. coli shuttle vector pKO403-lacZ'-Sp. G. vaginalis ATCC 49145 was selected for protocol development based on its high growth rate, lack of restriction activity, and susceptibility to spectinomycin. Low efficiency (~102 cfu/µg of plasmid DNA) but reproducible transformation was achieved. The expression of the spectinomycin resistance gene and the β-galactosidase gene of pKO403-lacZ'-Sp in G. vaginalis ATCC 49145 resulted in an increase in spectinomycin tolerance from 2 µg/mL (MIC) to >512 µg/mL, and an appreciable increase in β-galactosidase activity compared with the wild type. Plasmid copy number was determined to be ~3 per genome copy. Plasmid was lost rapidly in the absence of spectinomycin selection, with only ~5% of colony-forming units retaining the resistant phenotype after 24 h of growth without selection. These results demonstrate that G. vaginalis can be transformed by electroporation and that pKO403-lacZ'-Sp can be maintained and its genes expressed in this host, offering a starting point for the development of genetic tools for mechanistic studies of this important member of the vaginal microbiome. IMPORTANCE The healthy human vaginal microbiome is mainly dominated by Lactobacillus spp. An imbalance or shift in this population can lead to a gynecological disorder known as bacterial vaginosis (BV). In BV, there is a reduction in Lactobacillus spp. and an overgrowth of mixed anaerobes and facultative bacteria including Gardnerella spp. The reason for this increase in the Gardnerella population and associated changes in the vaginal microbiota composition is yet not understood, and a lack of genetic tools is one of the major barriers to performing mechanistic research to study the biology of these clinically significant organisms. The first step in developing genetic tools is introducing foreign DNA. In this study, we have developed a protocol for transformation and identified a plasmid that can be maintained in G. vaginalis.
Collapse
Affiliation(s)
- B M D N Kularatne
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Janet E Hill
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
Chen D, Yin Y, Hu Y, Cao L, Zhao C, Li B. Transposon-aided capture (TRACA) of plasmids from the human gut. Lett Appl Microbiol 2023; 76:ovad132. [PMID: 38031336 DOI: 10.1093/lambio/ovad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/12/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
The gut microbiota consists of a vast and diverse assemblage of microorganisms that play a pivotal role in maintaining host health. Nevertheless, a significant portion of the human gut microbiota remains uncultivated. Plasmids, a type of MGE, assume a critical function in the biological evolution and adaptation of bacteria to varying environments. To investigate the plasmids present within the gut microbiota community, we used the transposon-aided capture method (TRACA) to explore plasmids derived from the gut microbiota. In this study, fecal samples were collected from two healthy human volunteers and subsequently subjected to the TRACA method for plasmid isolation. Then, the complete sequence of the plasmids was obtained using the genome walking method, and sequence identity was also analyzed. A total of 15 plasmids were isolated. At last, 13 plasmids were successfully sequenced, of which 12 plasmids were highly identical to the plasmids in the National Center for Biotechnology Information (NCBI) database and were all small plasmids. Furthermore, a putative novel plasmid, named pMRPHD, was isolated, which had mobilized elements (oriT and oriV) and a potential type II restriction-modification (R-M) system encoded by DNA cytosine methyltransferase and type II restriction enzyme (Ban I), whose specific functions and applications warrant further exploration.
Collapse
Affiliation(s)
- Dan Chen
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Engineering Research Center for Research and Development of Plant Resources in Nanling Area, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 130 Yangzitang Road, Lingling District, Yongzhou 425199, Hunan Province, China
| | - Yeshi Yin
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Engineering Research Center for Research and Development of Plant Resources in Nanling Area, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 130 Yangzitang Road, Lingling District, Yongzhou 425199, Hunan Province, China
| | - Yunfei Hu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Engineering Research Center for Research and Development of Plant Resources in Nanling Area, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 130 Yangzitang Road, Lingling District, Yongzhou 425199, Hunan Province, China
| | - Linyan Cao
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Engineering Research Center for Research and Development of Plant Resources in Nanling Area, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 130 Yangzitang Road, Lingling District, Yongzhou 425199, Hunan Province, China
| | - Changhui Zhao
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Engineering Research Center for Research and Development of Plant Resources in Nanling Area, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 130 Yangzitang Road, Lingling District, Yongzhou 425199, Hunan Province, China
| | - Baiyuan Li
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Engineering Research Center for Research and Development of Plant Resources in Nanling Area, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 130 Yangzitang Road, Lingling District, Yongzhou 425199, Hunan Province, China
| |
Collapse
|
3
|
Atopobium vaginae and Prevotella bivia Are Able to Incorporate and Influence Gene Expression in a Pre-Formed Gardnerella vaginalis Biofilm. Pathogens 2021; 10:pathogens10020247. [PMID: 33672647 PMCID: PMC7924186 DOI: 10.3390/pathogens10020247] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Bacterial vaginosis (BV) is associated with a highly structured polymicrobial biofilm on the vaginal epithelium where Gardnerella species presumably play a pivotal role. Gardnerella vaginalis, Atopobium vaginae, and Prevotella bivia are vaginal pathogens detected during the early stages of incident BV. Herein, we aimed to analyze the impact of A. vaginae and P. bivia on a pre-established G. vaginalis biofilm using a novel in vitro triple-species biofilm model. Total biofilm biomass was determined by the crystal violet method. We also discriminated the bacterial populations in the biofilm and in its planktonic fraction by using PNA FISH. We further analyzed the influence of A. vaginae and P. bivia on the expression of key virulence genes of G. vaginalis by quantitative PCR. In our tested conditions, A. vaginae and P. bivia were able to incorporate into pre-established G. vaginalis biofilms but did not induce an increase in total biofilm biomass, when compared with 48-h G. vaginalis biofilms. However, they were able to significantly influence the expression of HMPREF0424_0821, a gene suggested to be associated with biofilm maintenance in G. vaginalis. This study suggests that microbial relationships between co-infecting bacteria can deeply affect the G. vaginalis biofilm, a crucial marker of BV.
Collapse
|