1
|
Górski A, Międzybrodzki R, Jończyk-Matysiak E, Kniotek M, Letkiewicz S. Therapeutic Phages as Modulators of the Immune Response: Practical Implications. Clin Infect Dis 2023; 77:S433-S439. [PMID: 37932118 DOI: 10.1093/cid/ciad483] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
While the medical community awaits formal proof of the efficacy of phage therapy, as is required by evidence-based medicine, existing data suggest that phages could also be applied based on their non-antibacterial action, especially phage-mediated immunomodulation. Promising avenues have been revealed by findings indicating that phages may mediate diverse actions in the immune system, while the list of phages able to dampen the aberrant immunity associated with a variety of disorders continuously grows. Here we summarize what is known in this field and possible options for the future. While available data are still scarce and preliminary, it appears that "phage repurposing" is worthy of more research, which could reveal new perspectives on applying phage therapy in contemporary medicine.
Collapse
Affiliation(s)
- Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland
- Clinic of Immunology, Transplantology, and Internal Medicine, Infant Jesus Hospital, The Medical University of Warsaw, Warsaw, Poland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland
| | - Monika Kniotek
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Sławomir Letkiewicz
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland
- Collegium Medicum, Jan Długosz University, Częstochowa, Poland
| |
Collapse
|
2
|
Brandenburg K, Ferrer-Espada R, Martinez-de-Tejada G, Nehls C, Fukuoka S, Mauss K, Weindl G, Garidel P. A Comparison between SARS-CoV-2 and Gram-Negative Bacteria-Induced Hyperinflammation and Sepsis. Int J Mol Sci 2023; 24:15169. [PMID: 37894850 PMCID: PMC10607443 DOI: 10.3390/ijms242015169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Sepsis is a life-threatening condition caused by the body's overwhelming response to an infection, such as pneumonia or urinary tract infection. It occurs when the immune system releases cytokines into the bloodstream, triggering widespread inflammation. If not treated, it can lead to organ failure and death. Unfortunately, sepsis has a high mortality rate, with studies reporting rates ranging from 20% to over 50%, depending on the severity and promptness of treatment. According to the World Health Organization (WHO), the annual death toll in the world is about 11 million. One of the main toxins responsible for inflammation induction are lipopolysaccharides (LPS, endotoxin) from Gram-negative bacteria, which rank among the most potent immunostimulants found in nature. Antibiotics are consistently prescribed as a part of anti-sepsis-therapy. However, antibiotic therapy (i) is increasingly ineffective due to resistance development and (ii) most antibiotics are unable to bind and neutralize LPS, a prerequisite to inhibit the interaction of endotoxin with its cellular receptor complex, namely Toll-like receptor 4 (TLR4)/MD-2, responsible for the intracellular cascade leading to pro-inflammatory cytokine secretion. The pandemic virus SARS-CoV-2 has infected hundreds of millions of humans worldwide since its emergence in 2019. The COVID-19 (Coronavirus disease-19) caused by this virus is associated with high lethality, particularly for elderly and immunocompromised people. As of August 2023, nearly 7 million deaths were reported worldwide due to this disease. According to some reported studies, upregulation of TLR4 and the subsequent inflammatory signaling detected in COVID-19 patients "mimics bacterial sepsis". Furthermore, the immune response to SARS-CoV-2 was described by others as "mirror image of sepsis". Similarly, the cytokine profile in sera from severe COVID-19 patients was very similar to those suffering from the acute respiratory distress syndrome (ARDS) and sepsis. Finally, the severe COVID-19 infection is frequently accompanied by bacterial co-infections, as well as by the presence of significant LPS concentrations. In the present review, we will analyze similarities and differences between COVID-19 and sepsis at the pathophysiological, epidemiological, and molecular levels.
Collapse
Affiliation(s)
- Klaus Brandenburg
- Brandenburg Antiinfektiva, c/o Forschungszentrum Borstel, Leibniz-Lungenzentrum, Parkallee 10, 23845 Borstel, Germany; (K.B.); (K.M.)
| | - Raquel Ferrer-Espada
- Department of Microbiology, University of Navarra, IdiSNA (Navarra Institute for Health Research), Irunlarrea 1, E-31008 Pamplona, Spain;
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Guillermo Martinez-de-Tejada
- Department of Microbiology, University of Navarra, IdiSNA (Navarra Institute for Health Research), Irunlarrea 1, E-31008 Pamplona, Spain;
| | - Christian Nehls
- Forschungszentrum Borstel, FG Biophysik, Parkallee 10, 23845 Borstel, Germany;
| | - Satoshi Fukuoka
- National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu 761-0395, Japan;
| | - Karl Mauss
- Brandenburg Antiinfektiva, c/o Forschungszentrum Borstel, Leibniz-Lungenzentrum, Parkallee 10, 23845 Borstel, Germany; (K.B.); (K.M.)
- Sylter Klinik Karl Mauss, Dr.-Nicolas-Strasse 3, 25980 Westerland (Sylt), Germany
| | - Günther Weindl
- Pharmazeutisches Institut, Abteilung Pharmakologie und Toxikologie, Universität Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany;
| | - Patrick Garidel
- Physikalische Chemie, Martin-Luther-Universität Halle-Wittenberg, 06108 Halle (Saale), Germany
| |
Collapse
|
3
|
Huang Z, Zhang H, Fu X, Han L, Zhang H, Zhang L, Zhao J, Xiao D, Li H, Li P. Autophagy-driven neutrophil extracellular traps: The dawn of sepsis. Pathol Res Pract 2022; 234:153896. [PMID: 35462228 DOI: 10.1016/j.prp.2022.153896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
Abstract
Sepsis is a systemic inflammatory syndrome caused by infection disorders. The core mechanism of sepsis is immune dysfunction. Neutrophils are the most abundant circulating white blood cells, which play a crucial role in mediating the innate immune response. Previous studies have shown that an effective way to treat sepsis is through the regulation of neutrophil functions. Autophagy, a highly conserved degradation process, is responsible for removing denatured proteins or damaged organelles within cells and protecting cells from external stimuli. It is a key homeostasis process that promotes neutrophil function and differentiation. Autophagy has been shown to be closely associated with inflammation and immunity. Neutrophils, the first line of innate immunity, migrate to inflammatory sites upon their activation. Neutrophil-mediated autophagy may participate in the clinical course of sepsis. In this review, we summarized and analyzed the latest research findings on the changes in neutrophil external traps during sepsis, the regulatory role of autophagy in neutrophil, and the potential application of autophagy-driven NETs in sepsis, so as to guide clinical treatment of sepsis.
Collapse
Affiliation(s)
- Zhenzhen Huang
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Haodong Zhang
- Department of Hypertension Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Xu Fu
- Key Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Li Han
- Key Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Haidan Zhang
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Ling Zhang
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Jing Zhao
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Danyang Xiao
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Hongyao Li
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Peiwu Li
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
4
|
Abd-Allah IM, El-Housseiny GS, Yahia IS, Aboshanab KM, Hassouna NA. Rekindling of a Masterful Precedent; Bacteriophage: Reappraisal and Future Pursuits. Front Cell Infect Microbiol 2021; 11:635597. [PMID: 34136415 PMCID: PMC8201069 DOI: 10.3389/fcimb.2021.635597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Antibiotic resistance is exuberantly becoming a deleterious health problem world-wide. Seeking innovative approaches is necessary in order to circumvent such a hazard. An unconventional fill-in to antibiotics is bacteriophage. Bacteriophages are viruses capable of pervading bacterial cells and disrupting their natural activity, ultimately resulting in their defeat. In this article, we will run-through the historical record of bacteriophage and its correlation with bacteria. We will also delineate the potential of bacteriophage as a therapeutic antibacterial agent, its supremacy over antibiotics in multiple aspects and the challenges that could arise on the way to its utilization in reality. Pharmacodynamics, pharmacokinetics and genetic engineering of bacteriophages and its proteins will be briefly discussed as well. In addition, we will highlight some of the in-use applications of bacteriophages, and set an outlook for their future ones. We will also overview some of the miscellaneous abilities of these tiny viruses in several fields other than the clinical one. This is an attempt to encourage tackling a long-forgotten hive. Perhaps, one day, the smallest of the creatures would be of the greatest help.
Collapse
Affiliation(s)
- Israa M. Abd-Allah
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ghadir S. El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ibrahim S. Yahia
- Research Center for Advanced Materials Science (RCAMS), Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Nanoscience Laboratory for Environmental and Bio-Medical Applications (NLEBA), Semiconductor Lab., Metallurgical Lab, Physics Department, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nadia A. Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Leong K, Gaglani B, Khanna AK, McCurdy MT. Novel Diagnostics and Therapeutics in Sepsis. Biomedicines 2021; 9:biomedicines9030311. [PMID: 33803628 PMCID: PMC8003067 DOI: 10.3390/biomedicines9030311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
Sepsis management demands early diagnosis and timely treatment that includes source control, antimicrobial therapy, and resuscitation. Currently employed diagnostic tools are ill-equipped to rapidly diagnose sepsis and isolate the offending pathogen, which limits the ability to offer targeted and lowest-toxicity treatment. Cutting edge diagnostics and therapeutics in development may improve time to diagnosis and address two broad management principles: (1) source control by removing the molecular infectious stimulus of sepsis, and (2) attenuation of the pathological immune response allowing the body to heal. This review addresses novel diagnostics and therapeutics and their role in the management of sepsis.
Collapse
Affiliation(s)
- Kieran Leong
- Division of Pulmonary & Critical Care, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Bhavita Gaglani
- Department of Anesthesiology, Section on Critical Care Medicine, Wake Forest University Hospital, Winston-Salem, NC 27157, USA; (B.G.); (A.K.K.)
| | - Ashish K. Khanna
- Department of Anesthesiology, Section on Critical Care Medicine, Wake Forest University Hospital, Winston-Salem, NC 27157, USA; (B.G.); (A.K.K.)
- Department of Outcomes Research, Outcomes Research Consortium, Cleveland, OH 44195, USA
| | - Michael T. McCurdy
- Division of Pulmonary & Critical Care, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Correspondence:
| |
Collapse
|