1
|
Fatima N, Khalid S, Rasool N, Imran M, Parveen B, Kanwal A, Irimie M, Ciurea CI. Approachable Synthetic Methodologies for Second-Generation β-Lactamase Inhibitors: A Review. Pharmaceuticals (Basel) 2024; 17:1108. [PMID: 39338273 PMCID: PMC11434895 DOI: 10.3390/ph17091108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Some antibiotics that are frequently employed are β-lactams. In light of the hydrolytic process of β-lactamase, found in Gram-negative bacteria, inhibitors of β-lactamase (BLIs) have been produced. Examples of first-generation β-lactamase inhibitors include sulbactam, clavulanic acid, and tazobactam. Many kinds of bacteria immune to inhibitors have appeared, and none cover all the β-lactamase classes. Various methods have been utilized to develop second-generation β-lactamase inhibitors possessing new structures and facilitate the formation of diazabicyclooctane (DBO), cyclic boronate, metallo-, and dual-nature β-lactamase inhibitors. This review describes numerous promising second-generation β-lactamase inhibitors, including vaborbactam, avibactam, and cyclic boronate serine-β-lactamase inhibitors. Furthermore, it covers developments and methods for synthesizing MβL (metallo-β-lactamase inhibitors), which are clinically effective, as well as the various dual-nature-based inhibitors of β-lactamases that have been developed. Several combinations are still only used in preclinical or clinical research, although only a few are currently used in clinics. This review comprises materials on the research progress of BLIs over the last five years. It highlights the ongoing need to produce new and unique BLIs to counter the appearance of multidrug-resistant bacteria. At present, second-generation BLIs represent an efficient and successful strategy.
Collapse
Affiliation(s)
- Noor Fatima
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Bushra Parveen
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Aqsa Kanwal
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Marius Irimie
- Faculty of Medicine, Transylvania University of Brasov, 500036 Brasov, Romania
| | - Codrut Ioan Ciurea
- Faculty of Medicine, Transylvania University of Brasov, 500036 Brasov, Romania
| |
Collapse
|
2
|
Bersani M, Failla M, Vascon F, Gianquinto E, Bertarini L, Baroni M, Cruciani G, Verdirosa F, Sannio F, Docquier JD, Cendron L, Spyrakis F, Lazzarato L, Tondi D. Structure-Based Optimization of 1,2,4-Triazole-3-Thione Derivatives: Improving Inhibition of NDM-/VIM-Type Metallo-β-Lactamases and Synergistic Activity on Resistant Bacteria. Pharmaceuticals (Basel) 2023; 16:1682. [PMID: 38139809 PMCID: PMC10747250 DOI: 10.3390/ph16121682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
The worldwide emergence and dissemination of Gram-negative bacteria expressing metallo-β-lactamases (MBLs) menace the efficacy of all β-lactam antibiotics, including carbapenems, a last-line treatment usually restricted to severe pneumonia and urinary tract infections. Nonetheless, no MBL inhibitor is yet available in therapy. We previously identified a series of 1,2,4-triazole-3-thione derivatives acting as micromolar inhibitors of MBLs in vitro, but devoid of synergistic activity in microbiological assays. Here, via a multidisciplinary approach, including molecular modelling, synthesis, enzymology, microbiology, and X-ray crystallography, we optimized this series of compounds and identified low micromolar inhibitors active against clinically relevant MBLs (NDM-1- and VIM-type). The best inhibitors increased, to a certain extent, the susceptibility of NDM-1- and VIM-4-producing clinical isolates to meropenem. X-ray structures of three selected inhibitors in complex with NDM-1 elucidated molecular recognition at the base of potency improvement, confirmed in silico predicted orientation, and will guide further development steps.
Collapse
Affiliation(s)
- Matteo Bersani
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (M.B.); (M.F.); (E.G.); (F.S.)
| | - Mariacristina Failla
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (M.B.); (M.F.); (E.G.); (F.S.)
| | - Filippo Vascon
- Department of Biology, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy; (F.V.); (L.C.)
| | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (M.B.); (M.F.); (E.G.); (F.S.)
| | - Laura Bertarini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy;
| | - Massimo Baroni
- Kinetic Business Centre, Molecular Discovery Ltd., Elstree, Borehamwood, Hertfordshire WD6 4PJ, UK;
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, Università Degli Studi di Perugia, Via Elce di Sotto, 06132 Perugia, Italy;
| | - Federica Verdirosa
- Department of Medical Biotechnologies, University of Siena, Viale Bracci 16, 53100 Siena, Italy; (F.V.); (F.S.); (J.-D.D.)
| | - Filomena Sannio
- Department of Medical Biotechnologies, University of Siena, Viale Bracci 16, 53100 Siena, Italy; (F.V.); (F.S.); (J.-D.D.)
| | - Jean-Denis Docquier
- Department of Medical Biotechnologies, University of Siena, Viale Bracci 16, 53100 Siena, Italy; (F.V.); (F.S.); (J.-D.D.)
- Laboratoire de Bactériologie Moléculaire, Centre d’Ingénierie des Protéines-InBioS, Université de Liège, B-4000 Liège, Belgium
| | - Laura Cendron
- Department of Biology, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy; (F.V.); (L.C.)
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (M.B.); (M.F.); (E.G.); (F.S.)
| | - Loretta Lazzarato
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (M.B.); (M.F.); (E.G.); (F.S.)
| | - Donatella Tondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy;
| |
Collapse
|
3
|
Gianquinto E, Sodano F, Rolando B, Kostrzewa M, Allarà M, Mahmoud AM, Kumar P, Spyrakis F, Ligresti A, Chegaev K. N-[1,3-Dialkyl(aryl)-2-oxoimidazolidin-4-ylidene]-aryl(alkyl)sulphonamides as Novel Selective Human Cannabinoid Type 2 Receptor (hCB2R) Ligands; Insights into the Mechanism of Receptor Activation/Deactivation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238152. [PMID: 36500256 PMCID: PMC9738591 DOI: 10.3390/molecules27238152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Cannabinoid type 1 (hCB1) and type 2 (hCB2) receptors are pleiotropic and crucial targets whose signaling contributes to physiological homeostasis and its restoration after injury. Being predominantly expressed in peripheral tissues, hCB2R represents a safer therapeutic target than hCB1R, which is highly expressed in the brain, where it regulates processes related to cognition, memory, and motor control. The development of hCB2R ligands represents a therapeutic opportunity for treating diseases such as pain, inflammation and cancer. Identifying new selective scaffolds for cannabinoids and determining the structural determinants responsible for agonism and antagonism are priorities in drug design. In this work, a series of N-[1,3-dialkyl(aryl)-2-oxoimidazolidin-4-ylidene]-aryl(alkyl)sulfonamides is designed and synthesized and their affinity for human hCB1R and hCB2R is determined. Starting with a scaffold selected from the NIH Psychoactive Drug Screening Program Repository, through a combination of molecular modeling and structure-activity relationship studies, we were able to identify the chemical features leading to finely tuned hCB2R selectivity. In addition, an in silico model capable of predicting the functional activity of hCB2R ligands was proposed and validated. The proposed receptor activation/deactivation model enabled the identification of four pure hCB2R-selective agonists that can be used as a starting point for the development of more potent ligands.
Collapse
Affiliation(s)
- Eleonora Gianquinto
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Federica Sodano
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Magdalena Kostrzewa
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Marco Allarà
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Ali Mokhtar Mahmoud
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Poulami Kumar
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Alessia Ligresti
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
- Correspondence: (A.L.); (K.C.); Tel.: +39-0818675093 (A.L.); +39-0116707140 (K.C.)
| | - Konstantin Chegaev
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
- Correspondence: (A.L.); (K.C.); Tel.: +39-0818675093 (A.L.); +39-0116707140 (K.C.)
| |
Collapse
|
4
|
Iqbal Z, Sun J, Yang H, Ji J, He L, Zhai L, Ji J, Zhou P, Tang D, Mu Y, Wang L, Yang Z. Recent Developments to Cope the Antibacterial Resistance via β-Lactamase Inhibition. Molecules 2022; 27:3832. [PMID: 35744953 PMCID: PMC9227086 DOI: 10.3390/molecules27123832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/01/2022] Open
Abstract
Antibacterial resistance towards the β-lactam (BL) drugs is now ubiquitous, and there is a major global health concern associated with the emergence of new β-lactamases (BLAs) as the primary cause of resistance. In addition to the development of new antibacterial drugs, β-lactamase inhibition is an alternative modality that can be implemented to tackle this resistance channel. This strategy has successfully revitalized the efficacy of a number of otherwise obsolete BLs since the discovery of the first β-lactamase inhibitor (BLI), clavulanic acid. Over the years, β-lactamase inhibition research has grown, leading to the introduction of new synthetic inhibitors, and a few are currently in clinical trials. Of note, the 1, 6-diazabicyclo [3,2,1]octan-7-one (DBO) scaffold gained the attention of researchers around the world, which finally culminated in the approval of two BLIs, avibactam and relebactam, which can successfully inhibit Ambler class A, C, and D β-lactamases. Boronic acids have shown promise in coping with Ambler class B β-lactamases in recent research, in addition to classes A, C, and D with the clinical use of vaborbactam. This review focuses on the further developments in the synthetic strategies using DBO as well as boronic acid derivatives. In addition, various other potential serine- and metallo- β-lactamases inhibitors that have been developed in last few years are discussed briefly as well. Furthermore, binding interactions of the representative inhibitors have been discussed based on the crystal structure data of inhibitor-enzyme complex, published in the literature.
Collapse
Affiliation(s)
- Zafar Iqbal
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan 750002, China; (H.Y.); (J.J.); (L.H.); (L.Z.); (J.J.); (P.Z.); (D.T.); (Y.M.); (L.W.)
| | - Jian Sun
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan 750002, China; (H.Y.); (J.J.); (L.H.); (L.Z.); (J.J.); (P.Z.); (D.T.); (Y.M.); (L.W.)
| | | | | | | | | | | | | | | | | | | | - Zhixiang Yang
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan 750002, China; (H.Y.); (J.J.); (L.H.); (L.Z.); (J.J.); (P.Z.); (D.T.); (Y.M.); (L.W.)
| |
Collapse
|
5
|
Chen C, Oelschlaeger P, Wang D, Xu H, Wang Q, Wang C, Zhao A, Yang KW. Structure and Mechanism-Guided Design of Dual Serine/Metallo-Carbapenemase Inhibitors. J Med Chem 2022; 65:5954-5974. [PMID: 35420040 DOI: 10.1021/acs.jmedchem.2c00213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Serine/metallo-carbapenemase-coproducing pathogens, often referred to as "superbugs", are a significant clinical problem. They hydrolyze nearly all available β-lactam antibiotics, especially carbapenems considered as last-resort antibiotics, seriously endangering efficacious antibacterial treatment. Despite the continuous global spread of carbapenem resistance, no dual-action inhibitors are available in therapy. This Perspective is the first systematic investigation of all chemotypes, modes of inhibition, and crystal structures of dual serine/metallo-carbapenemase inhibitors. An overview of the key strategy for designing dual serine/metallo-carbapenemase inhibitors and their mechanism of action is provided, as guiding rules for the development of clinically available dual inhibitors, coadministrated with carbapenems, to overcome the carbapenem resistance issue.
Collapse
Affiliation(s)
- Cheng Chen
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Peter Oelschlaeger
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 East Second Street, Pomona 91766, California, United States
| | - Dongmei Wang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310030, P. R. China
| | - Qian Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Chinese Medicine, Jinshui District 450046, Zhengzhou, P. R. China
| | - Cheng Wang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Aiguo Zhao
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
6
|
Sherif MM, Elkhatib WF, Khalaf WS, Elleboudy NS, Abdelaziz NA. Multidrug Resistant Acinetobacter baumannii Biofilms: Evaluation of Phenotypic-Genotypic Association and Susceptibility to Cinnamic and Gallic Acids. Front Microbiol 2021; 12:716627. [PMID: 34650528 PMCID: PMC8508616 DOI: 10.3389/fmicb.2021.716627] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/17/2021] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii armed with multidrug resistance (MDR) and biofilm-forming ability is increasingly recognized as an alarming pathogen. A deeper comprehension of the correlation between these two armories is required in circumventing its infections. This study examined the biofilm-forming ability of the isolates by crystal violet staining and the antibiotic susceptibility by broth microdilution method. The genetic basis of the MDR and biofilm-forming phenotypes was screened by polymerase chain reaction. The antimicrobial activities of cinnamic and gallic acids against planktonic cells and biofilms of A. baumannii were investigated, and the findings were confirmed with scanning electron microscopy (SEM). Among 90 A. baumannii isolates, 69 (76.6%) were MDR, and all were biofilm formers; they were classified into weak (12.2%), moderate (53.3%), and strong (34.5%) biofilm formers. Our results underlined a significant association between MDR and enhanced biofilm formation. Genotypically, the presence of blaVIM and blaOXA–23 genes along with biofilm-related genes (ompA, bap, and csuE) was statistically associated with the biofilm-forming abilities. Impressively, both gallic and cinnamic acids could significantly reduce the MDR A. baumannii biofilms with variable degrees dependent on the phenotype–genotype characteristics of the tested isolates. The current findings may possess future therapeutic impact through augmenting antimicrobial arsenal against life-threatening infections with MDR A. baumannii biofilms.
Collapse
Affiliation(s)
- Mahmoud M Sherif
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Egypt
| | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Al Galala, Egypt
| | - Wafaa S Khalaf
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Nooran S Elleboudy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Neveen A Abdelaziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Egypt
| |
Collapse
|
7
|
Discovery of Novel Chemical Series of OXA-48 β-Lactamase Inhibitors by High-Throughput Screening. Pharmaceuticals (Basel) 2021; 14:ph14070612. [PMID: 34202402 PMCID: PMC8308845 DOI: 10.3390/ph14070612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
The major cause of bacterial resistance to β-lactams is the production of hydrolytic β-lactamase enzymes. Nowadays, the combination of β-lactam antibiotics with β-lactamase inhibitors (BLIs) is the main strategy for overcoming such issues. Nevertheless, particularly challenging β-lactamases, such as OXA-48, pose the need for novel and effective treatments. Herein, we describe the screening of a proprietary compound collection against Klebsiella pneumoniae OXA-48, leading to the identification of several chemotypes, like the 4-ideneamino-4H-1,2,4-triazole (SC_2) and pyrazolo[3,4-b]pyridine (SC_7) cores as potential inhibitors. Importantly, the most potent representative of the latter series (ID2, AC50 = 0.99 μM) inhibited OXA-48 via a reversible and competitive mechanism of action, as demonstrated by biochemical and X-ray studies; furthermore, it slightly improved imipenem’s activity in Escherichia coli ATCC BAA-2523 β-lactam resistant strain. Also, ID2 showed good solubility and no sign of toxicity up to the highest tested concentration, resulting in a promising starting point for further optimization programs toward novel and effective non-β-lactam BLIs.
Collapse
|
8
|
Can We Exploit β-Lactamases Intrinsic Dynamics for Designing More Effective Inhibitors? Antibiotics (Basel) 2020; 9:antibiotics9110833. [PMID: 33233339 PMCID: PMC7700307 DOI: 10.3390/antibiotics9110833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
β-lactamases (BLs) represent the most frequent cause of antimicrobial resistance in Gram-negative bacteria. Despite the continuous efforts in the development of BL inhibitors (BLIs), new BLs able to hydrolyze the last developed antibiotics rapidly emerge. Moreover, the insurgence rate of effective mutations is far higher than the release of BLIs able to counteract them. This results in a shortage of antibiotics that is menacing the effective treating of infectious diseases. The situation is made even worse by the co-expression in bacteria of BLs with different mechanisms and hydrolysis spectra, and by the lack of inhibitors able to hit them all. Differently from other targets, BL flexibility has not been deeply exploited for drug design, possibly because of the small protein size, for their apparent rigidity and their high fold conservation. In this mini-review, we discuss the evidence for BL binding site dynamics being crucial for catalytic efficiency, mutation effect, and for the design of new inhibitors. Then, we report on identified allosteric sites in BLs and on possible allosteric inhibitors, as a strategy to overcome the frequent occurrence of mutations in BLs and the difficulty of competing efficaciously with substrates. Nevertheless, allosteric inhibitors could work synergistically with traditional inhibitors, increasing the chances of restoring bacterial susceptibility towards available antibiotics.
Collapse
|
9
|
Virtual screening identifies broad-spectrum β-lactamase inhibitors with activity on clinically relevant serine- and metallo-carbapenemases. Sci Rep 2020; 10:12763. [PMID: 32728062 PMCID: PMC7391774 DOI: 10.1038/s41598-020-69431-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/04/2020] [Indexed: 02/07/2023] Open
Abstract
Bacteria are known to evade β-lactam antibiotic action by producing β-lactamases (BLs), including carbapenemases, which are able to hydrolyze nearly all available β-lactams. The production of BLs represents one of the best known and most targeted mechanisms of resistance in bacteria. We have performed the parallel screening of commercially available compounds against a panel of clinically relevant BLs: class A CTX-M-15 and KPC-2, subclass B1 NDM-1 and VIM-2 MBLs, and the class C P. aeruginosa AmpC. The results show that all BLs prefer scaffolds having electron pair donors: KPC-2 is preferentially inhibited by sulfonamide and tetrazole-based derivatives, NDM-1 by compounds bearing a thiol, a thiosemicarbazide or thiosemicarbazone moiety, while VIM-2 by triazole-containing molecules. Few broad-spectrum BLs inhibitors were identified; among these, compound 40 potentiates imipenem activity against an NDM-1-producing E. coli clinical strain. The binary complexes of the two most promising compounds binding NDM-1 and VIM-2 were obtained at high resolution, providing strong insights to improve molecular docking simulations, especially regarding the interaction of MBLs with inhibitors.
Collapse
|
10
|
Gavara L, Verdirosa F, Legru A, Mercuri PS, Nauton L, Sevaille L, Feller G, Berthomieu D, Sannio F, Marcoccia F, Tanfoni S, De Luca F, Gresh N, Galleni M, Docquier JD, Hernandez JF. 4-( N-Alkyl- and -Acyl-amino)-1,2,4-triazole-3-thione Analogs as Metallo-β-Lactamase Inhibitors: Impact of 4-Linker on Potency and Spectrum of Inhibition. Biomolecules 2020; 10:E1094. [PMID: 32717907 PMCID: PMC7465886 DOI: 10.3390/biom10081094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 11/17/2022] Open
Abstract
To fight the increasingly worrying bacterial resistance to antibiotics, the discovery and development of new therapeutics is urgently needed. Here, we report on a new series of 1,2,4-triazole-3-thione compounds as inhibitors of metallo-β-lactamases (MBLs), which represent major resistance determinants to β-lactams, and especially carbapenems, in Gram-negative bacteria. These molecules are stable analogs of 4-amino-1,2,4-triazole-derived Schiff bases, where the hydrazone-like bond has been reduced (hydrazine series) or the 4-amino group has been acylated (hydrazide series); the synthesis and physicochemical properties thereof are described. The inhibitory potency was determined on the most clinically relevant acquired MBLs (IMP-, VIM-, and NDM-types subclass B1 MBLs). When compared with the previously reported hydrazone series, hydrazine but not hydrazide analogs showed similarly potent inhibitory activity on VIM-type enzymes, especially VIM-2 and VIM-4, with Ki values in the micromolar to submicromolar range. One of these showed broad-spectrum inhibition as it also significantly inhibited VIM-1 and NDM-1. Restoration of β-lactam activity in microbiological assays was observed for one selected compound. Finally, the binding to the VIM-2 active site was evaluated by isothermal titration calorimetry and a modeling study explored the effect of the linker structure on the mode of binding with this MBL.
Collapse
Affiliation(s)
- Laurent Gavara
- Institut des Biomolécules Max Mousseron, UMR5247 CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, 34093 Montpellier, France; (A.L.); (L.S.)
| | - Federica Verdirosa
- Dipartimento di Biotecnologie Mediche, Università di Siena, I-53100 Siena, Italy; (F.V.); (F.S.); (F.M.); (S.T.); (F.D.L.)
| | - Alice Legru
- Institut des Biomolécules Max Mousseron, UMR5247 CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, 34093 Montpellier, France; (A.L.); (L.S.)
| | - Paola Sandra Mercuri
- Laboratoire des Macromolécules Biologiques, Centre d’Ingénierie des Protéines-InBioS, Université de Liège, Institute of Chemistry B6 a, Sart-Tilman, 4000 Liège, Belgium; (P.S.M.); (M.G.)
| | - Lionel Nauton
- Institut de Chimie de Clermont-Ferrand, Université Clermont-Auvergne, CNRS, SIGMA Clermont, 63000 Clermont-Ferrand, France;
| | - Laurent Sevaille
- Institut des Biomolécules Max Mousseron, UMR5247 CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, 34093 Montpellier, France; (A.L.); (L.S.)
| | - Georges Feller
- Laboratoire de Biochimie, Centre d’Ingénierie des Protéines-InBioS, Université de Liège, B6, Sart-Tilman, 4000 Liège, Belgium;
| | - Dorothée Berthomieu
- Institut Charles Gerhardt, UMR5253, CNRS, Université de Montpellier, ENSCM, Cedex 5, 34296 Montpellier, France;
| | - Filomena Sannio
- Dipartimento di Biotecnologie Mediche, Università di Siena, I-53100 Siena, Italy; (F.V.); (F.S.); (F.M.); (S.T.); (F.D.L.)
| | - Francesca Marcoccia
- Dipartimento di Biotecnologie Mediche, Università di Siena, I-53100 Siena, Italy; (F.V.); (F.S.); (F.M.); (S.T.); (F.D.L.)
| | - Silvia Tanfoni
- Dipartimento di Biotecnologie Mediche, Università di Siena, I-53100 Siena, Italy; (F.V.); (F.S.); (F.M.); (S.T.); (F.D.L.)
| | - Filomena De Luca
- Dipartimento di Biotecnologie Mediche, Università di Siena, I-53100 Siena, Italy; (F.V.); (F.S.); (F.M.); (S.T.); (F.D.L.)
| | - Nohad Gresh
- Laboratoire de Chimie Théorique, UMR7616, Sorbonne Université, CNRS, 75252 Paris, France;
| | - Moreno Galleni
- Laboratoire des Macromolécules Biologiques, Centre d’Ingénierie des Protéines-InBioS, Université de Liège, Institute of Chemistry B6 a, Sart-Tilman, 4000 Liège, Belgium; (P.S.M.); (M.G.)
| | - Jean-Denis Docquier
- Dipartimento di Biotecnologie Mediche, Università di Siena, I-53100 Siena, Italy; (F.V.); (F.S.); (F.M.); (S.T.); (F.D.L.)
| | - Jean-François Hernandez
- Institut des Biomolécules Max Mousseron, UMR5247 CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, 34093 Montpellier, France; (A.L.); (L.S.)
| |
Collapse
|