1
|
Noonan JD, Beech RN. Two residues determine nicotinic acetylcholine receptor requirement for RIC-3. Protein Sci 2023; 32:e4718. [PMID: 37417463 PMCID: PMC10443321 DOI: 10.1002/pro.4718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/11/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Nicotinic acetylcholine receptors (N-AChRs) mediate fast synaptic signaling and are members of the pentameric ligand-gated ion channel (pLGIC) family. They rely on a network of accessory proteins in vivo for correct formation and transport to the cell surface. Resistance to cholinesterase 3 (RIC-3) is an endoplasmic reticulum protein that physically interacts with nascent pLGIC subunits and promotes their oligomerization. It is not known why some N-AChRs require RIC-3 in heterologous expression systems, whereas others do not. Previously we reported that the ACR-16 N-AChR from the parasitic nematode Dracunculus medinensis does not require RIC-3 in Xenopus laevis oocytes. This is unusual because all other nematode ACR-16, like the closely related Ascaris suum ACR-16, require RIC-3. Their high sequence similarity limits the number of amino acids that may be responsible, and the goal of this study was to identify them. A series of chimeras and point mutations between A. suum and D. medinensis ACR-16, followed by functional characterization with electrophysiology, identified two residues that account for a majority of the receptor requirement for RIC-3. ACR-16 with R/K159 in the cys-loop and I504 in the C-terminal tail did not require RIC-3 for functional expression. Mutating either of these to R/K159E or I504T, residues found in other nematode ACR-16, conferred a RIC-3 requirement. Our results agree with previous studies showing that these regions interact and are involved in receptor synthesis. Although it is currently unclear what precise mechanism they regulate, these residues may be critical during specific subunit folding and/or assembly cascades that RIC-3 may promote.
Collapse
Affiliation(s)
- Jennifer D. Noonan
- Institute of Parasitology, Macdonald Campus, McGill UniversityMontrealQuébecCanada
| | - Robin N. Beech
- Institute of Parasitology, Macdonald Campus, McGill UniversityMontrealQuébecCanada
| |
Collapse
|
2
|
Pfarr KM, Krome AK, Al-Obaidi I, Batchelor H, Vaillant M, Hoerauf A, Opoku NO, Kuesel AC. The pipeline for drugs for control and elimination of neglected tropical diseases: 1. Anti-infective drugs for regulatory registration. Parasit Vectors 2023; 16:82. [PMID: 36859332 PMCID: PMC9979492 DOI: 10.1186/s13071-022-05581-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/05/2022] [Indexed: 03/03/2023] Open
Abstract
The World Health Organization 'Ending the neglect to attain the Sustainable Development Goals: A road map for neglected tropical diseases 2021-2030' outlines the targets for control and elimination of neglected tropical diseases (NTDs). New drugs are needed to achieve some of them. We are providing an overview of the pipeline for new anti-infective drugs for regulatory registration and steps to effective use for NTD control and elimination. Considering drugs approved for an NTD by at least one stringent regulatory authority: fexinidazole, included in WHO guidelines for Trypanosoma brucei gambiense African trypanosomiasis, is in development for Chagas disease. Moxidectin, registered in 2018 for treatment of individuals ≥ 12 years old with onchocerciasis, is undergoing studies to extend the indication to 4-11-year-old children and obtain additional data to inform WHO and endemic countries' decisions on moxidectin inclusion in guidelines and policies. Moxidectin is also being evaluated for other NTDs. Considering drugs in at least Phase 2 clinical development, a submission is being prepared for registration of acoziborole as an oral treatment for first and second stage T.b. gambiense African trypanosomiasis. Bedaquiline, registered for tuberculosis, is being evaluated for multibacillary leprosy. Phase 2 studies of emodepside and flubentylosin in O. volvulus-infected individuals are ongoing; studies for Trichuris trichuria and hookworm are planned. A trial of fosravuconazole in Madurella mycetomatis-infected patients is ongoing. JNJ-64281802 is undergoing Phase 2 trials for reducing dengue viral load. Studies are ongoing or planned to evaluate oxantel pamoate for onchocerciasis and soil-transmitted helminths, including Trichuris, and oxfendazole for onchocerciasis, Fasciola hepatica, Taenia solium cysticercosis, Echinococcus granulosus and soil-transmitted helminths, including Trichuris. Additional steps from first registration to effective use for NTD control and elimination include country registrations, possibly additional studies to inform WHO guidelines and country policies, and implementation research to address barriers to effective use of new drugs. Relative to the number of people suffering from NTDs, the pipeline is small. Close collaboration and exchange of experience among all stakeholders developing drugs for NTDs may increase the probability that the current pipeline will translate into new drugs effectively implemented in affected countries.
Collapse
Affiliation(s)
- Kenneth M. Pfarr
- grid.15090.3d0000 0000 8786 803XInstitute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany ,grid.452463.2German Center for Infection Research, Partner Site Bonn-Cologne, Bonn, Germany
| | - Anna K. Krome
- grid.10388.320000 0001 2240 3300Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Bonn, Germany
| | - Issraa Al-Obaidi
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Hannah Batchelor
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Michel Vaillant
- grid.451012.30000 0004 0621 531XCompetence Center for Methodology and Statistics, Luxembourg Institute of Health, Strassen, Grand Duchy of Luxembourg
| | - Achim Hoerauf
- grid.15090.3d0000 0000 8786 803XInstitute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany ,grid.452463.2German Center for Infection Research, Partner Site Bonn-Cologne, Bonn, Germany
| | - Nicholas O. Opoku
- grid.449729.50000 0004 7707 5975Department of Epidemiology and Biostatistics School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana
| | - Annette C. Kuesel
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (WHO/TDR), World Health Organization, Geneva, Switzerland
| |
Collapse
|
3
|
Speculation on How RIC-3 and Other Chaperones Facilitate α7 Nicotinic Receptor Folding and Assembly. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144527. [PMID: 35889400 PMCID: PMC9318448 DOI: 10.3390/molecules27144527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/17/2022]
Abstract
The process of how multimeric transmembrane proteins fold and assemble in the endoplasmic reticulum is not well understood. The alpha7 nicotinic receptor (α7 nAChR) is a good model for multimeric protein assembly since it has at least two independent and specialized chaperones: Resistance to Inhibitors of Cholinesterase 3 (RIC-3) and Nicotinic Acetylcholine Receptor Regulator (NACHO). Recent cryo-EM and NMR data revealed structural features of α7 nAChRs. A ser-ala-pro (SAP) motif precedes a structurally important but unique "latch" helix in α7 nAChRs. A sampling of α7 sequences suggests the SAP motif is conserved from C. elegans to humans, but the latch sequence is only conserved in vertebrates. How RIC-3 and NACHO facilitate receptor subunits folding into their final pentameric configuration is not known. The artificial intelligence program AlphaFold2 recently predicted structures for NACHO and RIC-3. NACHO is highly conserved in sequence and structure across species, but RIC-3 is not. This review ponders how different intrinsically disordered RIC-3 isoforms from C. elegans to humans interact with α7 nAChR subunits despite having little sequence homology across RIC-3 species. Two models from the literature about how RIC-3 assists α7 nAChR assembly are evaluated considering recent structural information about the receptor and its chaperones.
Collapse
|
4
|
Hansen TVA, Sager H, Toutain CE, Courtot E, Neveu C, Charvet CL. The Caenorhabditis elegans DEG-3/DES-2 Channel Is a Betaine-Gated Receptor Insensitive to Monepantel. Molecules 2022; 27:312. [PMID: 35011544 PMCID: PMC8747062 DOI: 10.3390/molecules27010312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 11/24/2022] Open
Abstract
Natural plant compounds, such as betaine, are described to have nematocidal properties. Betaine also acts as a neurotransmitter in the free-living model nematode Caenorhabditis elegans, where it is required for normal motility. Worm motility is mediated by nicotinic acetylcholine receptors (nAChRs), including subunits from the nematode-specific DEG-3 group. Not all types of nAChRs in this group are associated with motility, and one of these is the DEG-3/DES-2 channel from C. elegans, which is involved in nociception and possibly chemotaxis. Interestingly, the activity of DEG-3/DES-2 channel from the parasitic nematode of ruminants, Haemonchus contortus, is modulated by monepantel and its sulfone metabolite, which belong to the amino-acetonitrile derivative anthelmintic drug class. Here, our aim was to advance the pharmacological knowledge of the DEG-3/DES-2 channel from C. elegans by functionally expressing the DEG-3/DES-2 channel in Xenopus laevis oocytes and using two-electrode voltage-clamp electrophysiology. We found that the DEG-3/DES-2 channel was more sensitive to betaine than ACh and choline, but insensitive to monepantel and monepantel sulfone when used as direct agonists and as allosteric modulators in co-application with betaine. These findings provide important insight into the pharmacology of DEG-3/DES-2 from C. elegans and highlight the pharmacological differences between non-parasitic and parasitic nematode species.
Collapse
Affiliation(s)
- Tina V. A. Hansen
- INRAE, Université de Tours, ISP, F-37380 Nouzilly, France; (T.V.A.H.); (E.C.); (C.N.)
| | - Heinz Sager
- Elanco Animal Health Inc., CH-4058 Basel, Switzerland;
| | | | - Elise Courtot
- INRAE, Université de Tours, ISP, F-37380 Nouzilly, France; (T.V.A.H.); (E.C.); (C.N.)
| | - Cédric Neveu
- INRAE, Université de Tours, ISP, F-37380 Nouzilly, France; (T.V.A.H.); (E.C.); (C.N.)
| | - Claude L. Charvet
- INRAE, Université de Tours, ISP, F-37380 Nouzilly, France; (T.V.A.H.); (E.C.); (C.N.)
| |
Collapse
|