1
|
Alotaibi F, Aba Alkhayl FF, Foudah AI, Azhar Kamal M, Moglad EH, Khan S, Rehman ZU, Warsi MK, Jawaid T, Alam A. Investigating the effects of four medicinal plants against dengue virus through QSAR modeling and molecular dynamics studies. J Biomol Struct Dyn 2025; 43:4063-4080. [PMID: 38197579 DOI: 10.1080/07391102.2024.2301744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
The Dengue virus (DENV) has been increasingly recognized as a prevalent viral pathogen responsible for global transmission of infection. It has been established that DENV's NS5 methyltransferase (MTase) controls viral replication. As a result, NS5 MTase is considered a potentially useful drug target for DENV. In this study, the two phases of virtual screening were conducted using the ML-based QSAR model and molecular docking to identify potential compounds against NS5 of DENV. Four medicinal plants [Aloe vera, Cannabis sativa (Hemp), Ocimum sanctum (Holy Basil; Tulsi), and Zingiber officinale (Ginger)] that showed anti-viral properties were selected for sourcing the phytochemicals and screening them against NS5. Additionally, re-docking at higher exhaustiveness and interaction analysis were performed which resulted in the identification of the top four hits (135398658, 5281675, 119394, and 969516) which showed comparable results with the control Sinefungin (SFG). Post molecular dynamics simulation, 135398658 showed the lowest RMSD (0.4-0.5 nm) and the maximum number of hydrogen bonds (eight hydrogen bonds) after the control while 5281675 and 969516 showed comparable hydrogen bonds to the control. These compounds showed direct interactions with the catalytic site residues GLU111 and ASP131, in addition to this these compounds showed stable complex formation as depicted by principal component analysis and free energy landscape. 135398658 showed lower total binding free energy (ΔGTotal = -36.56 kcal/mol) than the control, while 5281675 had comparable values to the control (ΔGTotal = -34.1 kcal/mol). Overall, the purpose of this study was to identify phytochemicals that inhibit NS5 function, that could be further tested experimentally to treat dengue virus (DENV).
Collapse
Affiliation(s)
- Faisal Alotaibi
- Department of Pharmacy Practice, College of Pharmacy, Shaqra University, Al-Dawadmi, Saudi Arabia
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmed I Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ehssan H Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Microbiology and Parasitology, Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum, Sudan
| | - Shamshir Khan
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Zia Ur Rehman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohiuddin Khan Warsi
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
2
|
Moqaddasi HR, Singh A, Mukherjee S, Rezai F, Gupta A, Srivastava S, Sridhar SB, Ahmad I, Dwivedi VD, Kumar S. Influencing hair regrowth with EGCG by targeting glycogen synthase kinase-3β activity: a molecular dynamics study. J Recept Signal Transduct Res 2025; 45:95-106. [PMID: 39964119 DOI: 10.1080/10799893.2025.2465240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/04/2024] [Accepted: 02/06/2025] [Indexed: 04/02/2025]
Abstract
Hair follicle growth process through several well-organized stages with specific input by several signaling pathways including Wnt/β-catenin and Sonic Hedgehog with GSK3β in this process. As such, this research focus on investigating the efficacy of molecules that are able to inhibit GSK3β action in inducing hair regrowth. Applying computational techniques, three compounds NMN, Resveratrol and EGCG were analyzed for their GSK3β inhibition. It was established that EGCG has the highest values of molecular docking scores and, in the case of the stability criteria such as RMSD and RMSF, presented the most stable dynamic simulation. EGCG has shown considerable TEMPORAL STABILITY with GSK3β in the complex, because over a period of 200 nanoseconds the molecules remained bound through hydrogen bonds and hydrophobic contacts. As confirmed by PCA, the largest conformational changes in GSK3β suggest significant inhibitory interaction. Out of all the studied compounds, EGCG turns out to be the most potent GSK3β inhibitor for hair regrowth purposes. The result obtained from the molecular dynamics simulation indicates that EGCG might exert a favorable impact to extract signaling pathways related with hair follicle cycling which is a significant objective. These outcome sets the phase for further experimental testing to discover the potential of EGCG in the treatment of alopecia.
Collapse
Affiliation(s)
- Hamid Raza Moqaddasi
- Department of Pharmacology, Sharda School of Medical Science and Research, Sharda University, Greater Noida, India
| | - Anshul Singh
- Department of Microbiology, School of Allied Health Sciences, Sharda University, Greater Noida, India
| | - Shoma Mukherjee
- Department of Pharmacology, Sharda School of Medical Science and Research, Sharda University, Greater Noida, India
| | - Fatima Rezai
- Department of Physiology, School of Pharmacy, Rabia Balkhi University, Kabul, Afghanistan
| | - Arti Gupta
- Llyod School of Pharmacy, Greater Noida, India
| | | | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Vivek Dhar Dwivedi
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, India
- Bioinformatics Research Division, Greater Noida, India
| | - Sandeep Kumar
- School of Pharmacy, Sharda University, Greater Noida, India
- DST-FIST Lab, Sharda University, Greater Noida, India
| |
Collapse
|
3
|
Raish M, Ahmad A, Khan S, Kalam MA. Molecular insights into anti-Protozoal action of natural compounds against Cryptosporidium parvum: a molecular simulation study. J Biomol Struct Dyn 2025; 43:2042-2058. [PMID: 38088773 DOI: 10.1080/07391102.2023.2293277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2025]
Abstract
The current study used the major target protein lactate dehydrogenase Cryptosporidium parvum to identify potential binders. Our approach was a comprehensive three-step screening of 2,569 natural compounds. First, we used molecular docking techniques, followed by an advanced DeepPurpose ML model for virtual screening. The final step involved meticulous re-docking and detailed interaction analysis. The known inhibitor FX11 was considered as a control that was used for comparative analysis. Our screening process led to the identification of three promising compounds: 5353794, 18475114, and 25229652. These compounds were chosen due to their exceptional ability to form hydrogen bonds and their high binding scores with the protein. Here, all three hits showed H-bonds with the functional residues (Asn122 and Thr231) of protein, while 25229652 also showed H-bond with the catalytic site residue (His177). RMSD behaviour reflected stable and consistent complex formation for all the compounds in their last 30 ns trajectories. Principal component analysis (PCA) and free energy landscape (FEL) showed a high frequency of favourable low free energy states. Using the MM/GBSA calculation, compounds 5353794 (ΔGTOTAL = -34.92 kcal/mol) and 18475114 (ΔGTOTAL = -34.66 kcal/mol) had the highest binding affinity with the protein however, 25229652 (ΔGTOTAL = -22.62 kcal/mol) had ΔGTOTAL comparable to the control FX11. These natural compounds not only show the potential for hindering C. parvum lactate dehydrogenase but also open new avenues in its drug development. Their strong binding properties and stable interactions mark them as the prime candidates for further research and experimental validation as anti-cryptosporidiosis agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Abul Kalam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Foudah AI, Alam A. Enhanced targeting efficacy of baicalein analogues on the dimeric state of SARS-CoV-2 3CL protease compared to monomeric state. J Biomol Struct Dyn 2024:1-14. [PMID: 39688934 DOI: 10.1080/07391102.2024.2437522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/17/2024] [Indexed: 12/19/2024]
Abstract
The COVID-19 pandemic caused by the novel coronavirus, SARS-CoV-2, has been a global threat affecting the entire world. It is a single-stranded RNA virus that belongs to the coronavirus family. In SARS-CoV2, the 3CL protease protein significantly contributes to viral replication and is responsible for viral polyprotein cleavage. These factors make 3CL protease a promising drug target to inhibit the growth of SARS-CoV-2. In this study, using in silico approaches, we have targeted the 3CL protease of SARS-CoV-2 to identify promising antiviral candidates for COVID-19 treatment. Here, 463 structural analogs of Baicalein compounds were collected initially, and by employing the quantitative structure-activity relationship (QSAR) technique on 76 antiviral compounds, screening was done against monomeric and dimeric versions of the target protein. Further, based on the molecular interaction studies and MD simulation, followed by validation of the obtained simulation trajectories using PCA and MM/PBSA calculation, it was observed that ligands showed better binding stability with dimeric proteins than monomeric proteins and can be used as suitable therapeutic candidates for SARS-CoV2 treatment. The MD simulation showed a favorable, robust outcome for the 46885476 when bound to the dimeric state. It matched the control in the number of hydrogen bonds and conformational stability. This molecule also directly impacted the catalytic dyads of the protein, suggesting potential inhibitory action. In addition, this study helps to accelerate the drug development process against SARS-CoV2 through the observed in-silico results, which need to be validated using clinical experiments in future studies.
Collapse
Affiliation(s)
- Ahmed I Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| |
Collapse
|
5
|
Rabaan AA, Halwani MA, Garout M, Alotaibi J, AlShehail BM, Alotaibi N, Almuthree SA, Alshehri AA, Alshahrani MA, Othman B, Alqahtani A, Alissa M. Exploration of phytochemical compounds against Marburg virus using QSAR, molecular dynamics, and free energy landscape. Mol Divers 2024; 28:3261-3278. [PMID: 37925643 DOI: 10.1007/s11030-023-10753-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
Marburg virus disease (MVD) is caused by the Marburg virus, a one-of-a-kind zoonotic RNA virus from the genus Filovirus. Thus, this current study employed AI-based QSAR and molecular docking-based virtual screening for identifying potential binders against the target protein (nucleoprotein (NP)) of the Marburg virus. A total of 2727 phytochemicals were used for screening, out of which the top three compounds (74977521, 90470472, and 11953909) were identified based on their predicted bioactivity (pIC50) and binding score (< - 7.4 kcal/mol). Later, MD simulation in triplicates and trajectory analysis were performed which showed that 11953909 and 74977521 had the most stable and consistent complex formations and had the most significant interactions with the highest number of hydrogen bonds. PCA (principal component analysis) and FEL (free energy landscape) analysis indicated that these compounds had favourable energy states for most of the conformations. The total binding free energy of the compounds using the MM/GBSA technique showed that 11953909 (ΔGTOTAL = - 30.78 kcal/mol) and 74977521 (ΔGTOTAL = - 30 kcal/mol) had the highest binding affinity with the protein. Overall, this in silico pipeline proposed that the phytochemicals 11953909 and 74977521 could be the possible binders of NP. This study aimed to find phytochemicals inhibiting the protein's function and potentially treating MVD.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, 31311, Dhahran, Saudi Arabia.
- College of Medicine, Alfaisal University, 11533, Riyadh, Saudi Arabia.
- Department of Public Health and Nutrition, The University of Haripur, Haripur, 22610, Pakistan.
| | - Muhammad A Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, 4781, Al Baha, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Jawaher Alotaibi
- Infectious diseases Unit, Department of Medicine, King Faisal Specialist Hospital and Research Center, 11564, Riyadh, Saudi Arabia
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Nouf Alotaibi
- Clinical pharmacy Department, College of Pharmacy, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Souad A Almuthree
- Department of Infectious Disease, King Abdullah Medical City, 43442, Makkah, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 61441, Najran, Saudi Arabia
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 61441, Najran, Saudi Arabia
| | - Basim Othman
- Department of Public Health, Faculty of Applied Medical Sciences, Al Baha University, 65779, Al Baha, Saudi Arabia
| | - Abdulaziz Alqahtani
- Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, 61321, Abha, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia.
| |
Collapse
|
6
|
Rabaan AA, Almansour ZH, Al Bshabshe A, Halwani MA, Al-Subaie MF, Al Kaabi NA, Alshamrani SA, Alshehri AA, Nahari MH, Alqahtani AS, Alhajri M, Alissa M. Application of temperature-dependent and steered molecular dynamics simulation to screen anti-dengue compounds against Marburg virus. J Biomol Struct Dyn 2024:1-20. [PMID: 38234048 DOI: 10.1080/07391102.2024.2303386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Marburg virus infections are extremely fatal with a fatality range of 23% to 90%, therefore there is an urgent requirement to design and develop efficient therapeutic molecules. Here, a comprehensive temperature-dependent molecular dynamics (MD) simulation method was implemented to identify the potential molecule from the anti-dengue compound library that can inhibit the function of the VP24 protein of Marburg. Virtual high throughput screening identified five effective binders of VP24 after screening 484 anti-dengue compounds. These compounds were treated in MD simulation at four different temperatures: 300, 340, 380, and 420 K. Higher temperatures showed dissociation of hit compounds from the protein. Further, triplicates of 100 ns MD simulation were conducted which showed that compounds ID = 118717693, and ID = 5361 showed strong stability with the protein molecule. These compounds were further validated using Δ G binding free energies and they showed: -30.38 kcal/mol, and -67.83 kcal/mol binding free energies, respectively. Later, these two compounds were used in steered MD simulation to detect its dissociation. Compound ID = 5361 showed the maximum pulling force of 199.02 kcal/mol/nm to dissociate the protein-ligand complex while ID = 118717693 had a pulling force of 101.11 kcal/mol/nm, respectively. This ligand highest number of hydrogen bonds with varying occupancies at 89.93%, 69.80%, 57.93%, 52.33%, and 50.63%. This study showed that ID = 5361 can bind with the VP24 strongly and has the potential to inhibit its function which can be validated in the in-vitro experiment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Zainab H Almansour
- Biological Science Department, College of Science, King Faisal University, Hofuf, Saudi Arabia
| | - Ali Al Bshabshe
- Adult critical care Department of Medicine, Division of adult critical care, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Muhammad A Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, Saudi Arabia
| | - Maha F Al-Subaie
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh, Saudi Arabia
| | - Nawal A Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi, United Arab Emirates
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi, United Arab Emirates
| | - Saleh A Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Mohammed H Nahari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ali S Alqahtani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
7
|
Francesconi V, Rizzo M, Schenone S, Carbone A, Tonelli M. State-of-the-art Review on the Antiparasitic Activity of Benzimidazolebased Derivatives: Facing Malaria, Leishmaniasis, and Trypanosomiasis. Curr Med Chem 2024; 31:1955-1982. [PMID: 37718524 PMCID: PMC11071657 DOI: 10.2174/0929867331666230915093928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/19/2023] [Accepted: 08/27/2023] [Indexed: 09/19/2023]
Abstract
Protozoan parasites represent a significant risk for public health worldwide, afflicting particularly people in more vulnerable categories and cause large morbidity and heavy economic impact. Traditional drugs are limited by their toxicity, low efficacy, route of administration, and cost, reflecting their low priority in global health management. Moreover, the drug resistance phenomenon threatens the positive therapy outcome. This scenario claims the need of addressing more adequate therapies. Among the diverse strategies implemented, the medicinal chemistry efforts have also focused their attention on the benzimidazole nucleus as a promising pharmacophore for the generation of new drug candidates. Hence, the present review provides a global insight into recent progress in benzimidazole-based derivatives drug discovery against important protozoan diseases, such as malaria, leishmaniasis and trypanosomiasis. The more relevant chemical features and structure-activity relationship studies of these molecules are discussed for the purpose of paving the way towards the development of more viable drugs for the treatment of these parasitic infections.
Collapse
Affiliation(s)
- Valeria Francesconi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, Genoa, 16132, Italy
| | - Marco Rizzo
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, Genoa, 16132, Italy
| | - Silvia Schenone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, Genoa, 16132, Italy
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, Genoa, 16132, Italy
| | - Michele Tonelli
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, Genoa, 16132, Italy
| |
Collapse
|
8
|
Alshahrani MM. Inhibition of SARS-CoV-2 NSP-15 by Uridine-5'-Monophosphate Analogues Using QSAR Modelling, Molecular Dynamics Simulations, and Free Energy Landscape. Saudi Pharm J 2024; 32:101914. [PMID: 38111672 PMCID: PMC10727945 DOI: 10.1016/j.jsps.2023.101914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023] Open
Abstract
SARS-CoV-2 is accountable for severe social and economic disruption around the world causing COVID-19. Non-structural protein-15 (NSP15) possesses a domain that is vital to the viral life cycle and is known as uridylate-specific endoribonuclease (EndoU). This domain binds to the uridine 5'-monophosphate (U5P) so that the protein may carry out its native activity. It is considered a vital drug target to inhibit the growth of the virus. Thus, in this current study, ML-based QSAR and virtual screening of U5P analogues targeting Nsp15 were performed to identify potential molecules against SARS-CoV-2. Screening of 816 unique U5P analogues using ML-based QSAR identified 397 compounds ranked on their predicted bioactivity (pIC50). Further, molecular docking and hydrogen bond interaction analysis resulted in the selection of the top three compounds (53309102, 57398422, and 76314921). Molecular dynamics simulation of the most promising compounds showed that two molecules 53309102 and 57398422 acted as potential binders of Nsp15. The compound was able to inhibit nsp15 activity as it was successfully bound to the active site of the nsp15 protein. This was achieved by the formation of relevant contacts with enzymatically critical amino acid residues (His235, His250, and Lys290). Principal component analysis and free energy landscape studies showed stable complex formation while MM/GBSA calculation showed lower binding energies for 53309102 (ΔGTOTAL = -29.4 kcal/mol) and 57398422 (ΔGTOTAL = -39.4 kcal/mol) compared to the control U5P (ΔGTOTAL = -18.8 kcal/mol). This study aimed to identify analogues of U5P inhibiting the NSP15 function that potentially could be used for treating COVID-19.
Collapse
Affiliation(s)
- Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| |
Collapse
|
9
|
Baroni D, Scarano N, Ludovico A, Brandas C, Parodi A, Lunaccio D, Fossa P, Moran O, Cichero E, Millo E. In Silico and In Vitro Evaluation of the Mechanism of Action of Three VX809-Based Hybrid Derivatives as Correctors of the F508del CFTR Protein. Pharmaceuticals (Basel) 2023; 16:1702. [PMID: 38139828 PMCID: PMC10748060 DOI: 10.3390/ph16121702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Cystic fibrosis (CF), the most common autosomal recessive fatal genetic disease in the Caucasian population, is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel that regulates salt and water transport across a variety of secretory epithelia. Deletion of phenylalanine at position 508, F508del, the most common CF-causing mutation, destabilises the CFTR protein, causing folding and trafficking defects that lead to a dramatic reduction in its functional expression. Small molecules called correctors have been developed to rescue processing-defective F508del CFTR. We have combined in silico and in vitro approaches to investigate the mechanism of action and potential as CFTR correctors of three hybrid derivatives (2a, 7a, and 7m) obtained by merging the amino-arylthiazole core with the benzodioxole carboxamide moiety characterising the corrector lumacaftor. Molecular modelling analyses suggested that the three hybrids interact with a putative region located at the MSD1/NBD1 interface. Biochemical analyses confirmed these results, showing that the three molecules affect the expression and stability of the F508del NBD1. Finally, the YFP assay was used to evaluate the influence of the three hybrid derivatives on F508del CFTR function, assessing that their effect is additive to that of the correctors VX661 and VX445. Our study shows that the development and testing of optimised compounds targeting different structural and functional defects of mutant CFTR is the best strategy to provide more effective correctors that could be used alone or in combination as a valuable therapeutic option to treat an even larger cohort of people affected by CF.
Collapse
Affiliation(s)
- Debora Baroni
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini, 6, 16149 Genova, Italy; (A.L.); (O.M.)
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (P.F.)
| | - Alessandra Ludovico
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini, 6, 16149 Genova, Italy; (A.L.); (O.M.)
| | - Chiara Brandas
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini, 6, 16149 Genova, Italy; (A.L.); (O.M.)
| | - Alice Parodi
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy; (A.P.); (D.L.); (E.M.)
| | - Dario Lunaccio
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy; (A.P.); (D.L.); (E.M.)
| | - Paola Fossa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (P.F.)
| | - Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini, 6, 16149 Genova, Italy; (A.L.); (O.M.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (P.F.)
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy; (A.P.); (D.L.); (E.M.)
| |
Collapse
|
10
|
Abbotto E, Casini B, Piacente F, Scarano N, Cerri E, Tonelli M, Astigiano C, Millo E, Sturla L, Bruzzone S, Cichero E. Novel Thiazole-Based SIRT2 Inhibitors Discovered via Molecular Modelling Studies and Enzymatic Assays. Pharmaceuticals (Basel) 2023; 16:1316. [PMID: 37765125 PMCID: PMC10535842 DOI: 10.3390/ph16091316] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Recently, the development of sirtuin small molecule inhibitors (SIRTIs) has been gaining attention for the treatment of different cancer types, but also to contrast neurodegenerative disease, diabetes, and autoimmune syndromes. In the search for SIRT2 modulators, the availability of several X-crystallographic data regarding SIRT2-ligand complexes has allowed for setting up a structure-based study, which is herein presented. A set of 116 SIRT2 inhibitors featuring different chemical structures has been collected from the literature and used for molecular docking studies involving 4RMG and 5MAT PDB codes. The information found highlights key contacts with the SIRT2 binding pocket such as Van der Waals and π-π stacking with Tyr104, Phe119, Phe234, and Phe235 in order to achieve high inhibitory ability values. Following the preliminary virtual screening studies, a small in-house library of compounds (1a-7a), previously investigated as putative HSP70 inhibitors, was described to guide the search for dual-acting HSP70/SIRT2 inhibitors. Biological and enzymatic assays validated the whole procedure. Compounds 2a and 7a were found to be the most promising derivatives herein proposed.
Collapse
Affiliation(s)
- Elena Abbotto
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (E.A.); (F.P.); (E.C.); (C.A.); (E.M.); (L.S.)
| | - Beatrice Casini
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (B.C.); (N.S.); (M.T.)
| | - Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (E.A.); (F.P.); (E.C.); (C.A.); (E.M.); (L.S.)
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (B.C.); (N.S.); (M.T.)
| | - Elena Cerri
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (E.A.); (F.P.); (E.C.); (C.A.); (E.M.); (L.S.)
| | - Michele Tonelli
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (B.C.); (N.S.); (M.T.)
| | - Cecilia Astigiano
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (E.A.); (F.P.); (E.C.); (C.A.); (E.M.); (L.S.)
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (E.A.); (F.P.); (E.C.); (C.A.); (E.M.); (L.S.)
| | - Laura Sturla
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (E.A.); (F.P.); (E.C.); (C.A.); (E.M.); (L.S.)
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (E.A.); (F.P.); (E.C.); (C.A.); (E.M.); (L.S.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (B.C.); (N.S.); (M.T.)
| |
Collapse
|
11
|
Abdullah Al Awadh A. Biomedical applications of selective metal complexes of indole, benzimidazole, benzothiazole and benzoxazole: A review (From 2015 to 2022). Saudi Pharm J 2023; 31:101698. [PMID: 37533494 PMCID: PMC10393588 DOI: 10.1016/j.jsps.2023.101698] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023] Open
Abstract
Indole, benzoxazole benzothiazole and benzimidazole are excellent classes of organic heterocyclic compounds. These compounds show significant application in pharmacy, industries, dyes, medicine, polymers and food packages. These compounds also form metal complexes with copper, zinc, cadmium, nickel, cobalt, platinum, gold, palladium chromium, silver, iron, and other metals that have shown to be significant applications. Recently, researchers have attracted enormous attention toward heterocyclic compounds such as indole, benzimidazole, benzothiazole, benzoxazole, and their complexes due to their excellent medicinal applications such as anti-ulcerogenic, anti-cancer, antihypertensive, antifungal, anti-inflammatory, antitubercular, antiparasitic, anti-obesity, antimalarial, antiglycation, antiviral potency, antineuropathic, analgesic antioxidant, antihistaminic, and antibacterial potentials. In this article, we summarize the medicinal applications of these compounds as well as their metal complexes. We hope this article will help researchers in designing and synthesizing novel and potent compounds with significant applications in various fields.
Collapse
|
12
|
Alsaady IM, Bajrai LH, Alandijany TA, Gattan HS, El-Daly MM, Altwaim SA, Alqawas RT, Dwivedi VD, Azhar EI. Cheminformatics Strategies Unlock Marburg Virus VP35 Inhibitors from Natural Compound Library. Viruses 2023; 15:1739. [PMID: 37632081 PMCID: PMC10459822 DOI: 10.3390/v15081739] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
The Ebola virus and its close relative, the Marburg virus, both belong to the family Filoviridae and are highly hazardous and contagious viruses. With a mortality rate ranging from 23% to 90%, depending on the specific outbreak, the development of effective antiviral interventions is crucial for reducing fatalities and mitigating the impact of Marburg virus outbreaks. In this investigation, a virtual screening approach was employed to evaluate 2042 natural compounds for their potential interactions with the VP35 protein of the Marburg virus. Average and worst binding energies were calculated for all 20 poses, and compounds that exhibited binding energies <-6 kcal/mol in both criteria were selected for further analysis. Based on binding energies, only six compounds (Estradiol benzoate, INVEGA (paliperidone), Isosilybin, Protopanaxadiol, Permethrin, and Bufalin) were selected for subsequent investigations, focusing on interaction analysis. Among these selected compounds, Estradiol benzoate, INVEGA (paliperidone), and Isosilybin showed strong hydrogen bonds, while the others did not. In this study, the compounds Myricetin, Isosilybin, and Estradiol benzoate were subjected to a molecular dynamics (MD) simulation and free binding energy calculation using MM/GBSA analysis. The reference component Myricetin served as a control. Estradiol benzoate exhibited the most stable and consistent root-mean-square deviation (RMSD) values, whereas Isosilybin showed significant fluctuations in RMSD. The compound Estradiol benzoate exhibited the lowest ΔG binding free energy (-22.89 kcal/mol), surpassing the control compound's binding energy (-9.29 kcal/mol). Overall, this investigation suggested that Estradiol benzoate possesses favorable binding free energies, indicating a potential inhibitory mechanism against the VP35 protein of the Marburg virus. The study proposes that these natural compounds could serve as a therapeutic option for preventing Marburg virus infection. However, experimental validation is required to further corroborate these findings.
Collapse
Affiliation(s)
- Isra M. Alsaady
- Special Infectious Agents Unit BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; (I.M.A.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Leena H. Bajrai
- Special Infectious Agents Unit BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; (I.M.A.)
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Thamir A. Alandijany
- Special Infectious Agents Unit BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; (I.M.A.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Hattan S. Gattan
- Special Infectious Agents Unit BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; (I.M.A.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Mai M. El-Daly
- Special Infectious Agents Unit BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; (I.M.A.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Sarah A. Altwaim
- Special Infectious Agents Unit BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; (I.M.A.)
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rahaf T. Alqawas
- Molecular Diagnostic Laboratory, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21362, Saudi Arabia;
| | - Vivek Dhar Dwivedi
- Bioinformatics Research Division, Quanta Calculus, Greater Noida 201310, India
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Tamil Nadu 602105, India
| | - Esam I. Azhar
- Special Infectious Agents Unit BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; (I.M.A.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| |
Collapse
|
13
|
Scarano N, Abbotto E, Musumeci F, Salis A, Brullo C, Fossa P, Schenone S, Bruzzone S, Cichero E. Virtual Screening Combined with Enzymatic Assays to Guide the Discovery of Novel SIRT2 Inhibitors. Int J Mol Sci 2023; 24:ijms24119363. [PMID: 37298312 DOI: 10.3390/ijms24119363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Sirtuin isoform 2 (SIRT2) is one of the seven sirtuin isoforms present in humans, being classified as class III histone deacetylases (HDACs). Based on the high sequence similarity among SIRTs, the identification of isoform selective modulators represents a challenging task, especially for the high conservation observed in the catalytic site. Efforts in rationalizing selectivity based on key residues belonging to the SIRT2 enzyme were accompanied in 2015 by the publication of the first X-ray crystallographic structure of the potent and selective SIRT2 inhibitor SirReal2. The subsequent studies led to different experimental data regarding this protein in complex with further different chemo-types as SIRT2 inhibitors. Herein, we reported preliminary Structure-Based Virtual Screening (SBVS) studies using a commercially available library of compounds to identify novel scaffolds for the design of new SIRT2 inhibitors. Biochemical assays involving five selected compounds allowed us to highlight the most effective chemical features supporting the observed SIRT2 inhibitory ability. This information guided the following in silico evaluation and in vitro testing of further compounds from in-house libraries of pyrazolo-pyrimidine derivatives towards novel SIRT2 inhibitors (1-5). The final results indicated the effectiveness of this scaffold for the design of promising and selective SIRT2 inhibitors, featuring the highest inhibition among the tested compounds, and validating the applied strategy.
Collapse
Affiliation(s)
- Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Elena Abbotto
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Francesca Musumeci
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Annalisa Salis
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Paola Fossa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Silvia Schenone
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| |
Collapse
|
14
|
Threat of respiratory syncytial virus infection knocking the door: a proposed potential drug candidate through molecular dynamics simulations, a future alternative. J Mol Model 2023; 29:91. [PMID: 36884131 DOI: 10.1007/s00894-023-05489-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023]
Abstract
The discovery of antiviral approaches to prevent or cure respiratory syncytial virus (RSV) infections is critical, particularly because RSV is one of the most common causes of infant respiratory problems. There is currently no approved vaccination available to treat RSV infections. FDA has approved the drug ribavirin, but it is not sufficient to treat RSV. This work aimed to find and study in silico anti-RSV drugs that target matrix protein and nucleoprotein. In this study, we have identified five drug candidates that had better binding energies than ribavirin. Garenoxacin appeared as top lead compounds between them. AutoDock Vina was used to execute molecular docking of a library of chosen chemicals. The high-score compound was then confirmed using the Maestro 12.3 module's molecular dynamics simulation and the binding energies derived using Prime/Molecular Mechanics Generalized Born Surface Area (Prime/MM-GBSA). Comparative molecular dynamics simulations revealed that garenoxacin has better stability and high residue contacts with high binding affinity than ribavirin. This study showed garenoxacin could prevent RSV infection better than ribavirin. In pursuing a more effective RSV control drug, additional research into these chemicals in vitro and in vivo is essential.
Collapse
|
15
|
Akash S, Hossain A, Mukerjee N, Sarker MMR, Khan MF, Hossain MJ, Rashid MA, Kumer A, Ghosh A, León-Figueroa DA, Barboza JJ, Padhi BK, Sah R. Modified coptisine derivatives as an inhibitor against pathogenic Rhizomucor miehei, Mycolicibacterium smegmatis (Black Fungus), Monkeypox, and Marburg virus by molecular docking and molecular dynamics simulation-based drug design approach. Front Pharmacol 2023; 14:1140494. [PMID: 37153804 PMCID: PMC10154673 DOI: 10.3389/fphar.2023.1140494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
During the second phase of SARS-CoV-2, an unknown fungal infection, identified as black fungus, was transmitted to numerous people among the hospitalized COVID-19 patients and increased the death rate. The black fungus is associated with the Mycolicibacterium smegmatis, Mucor lusitanicus, and Rhizomucor miehei microorganisms. At the same time, other pathogenic diseases, such as the Monkeypox virus and Marburg virus, impacted global health. Policymakers are concerned about these pathogens due to their severe pathogenic capabilities and rapid spread. However, no standard therapies are available to manage and treat those conditions. Since the coptisine has significant antimicrobial, antiviral, and antifungal properties; therefore, the current investigation has been designed by modifying coptisine to identify an effective drug molecule against Black fungus, Monkeypox, and Marburg virus. After designing the derivatives of coptisine, they have been optimized to get a stable molecular structure. These ligands were then subjected to molecular docking study against two vital proteins obtained from black fungal pathogens: Rhizomucor miehei (PDB ID: 4WTP) and Mycolicibacterium smegmatis (PDB ID 7D6X), and proteins found in Monkeypox virus (PDB ID: 4QWO) and Marburg virus (PDB ID 4OR8). Following molecular docking, other computational investigations, such as ADMET, QSAR, drug-likeness, quantum calculation and molecular dynamics, were also performed to determine their potentiality as antifungal and antiviral inhibitors. The docking score reported that they have strong affinities against Black fungus, Monkeypox virus, and Marburg virus. Then, the molecular dynamic simulation was conducted to determine their stability and durability in the physiological system with water at 100 ns, which documented that the mentioned drugs were stable over the simulated time. Thus, our in silico investigation provides a preliminary report that coptisine derivatives are safe and potentially effective against Black fungus, Monkeypox virus, and Marburg virus. Hence, coptisine derivatives may be a prospective candidate for developing drugs against Black fungus, Monkeypox and Marburg viruses.
Collapse
Affiliation(s)
- Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Arafat Hossain
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Nobendu Mukerjee
- Department of Microbiology, West Bengal State University, Kolkata, West Bengal, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Md. Moklesur Rahman Sarker
- Health Med. Science Research Network, Dhaka, Bangladesh
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | | | - Md. Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | - Mohammad A. Rashid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Ajoy Kumer
- Laboratory of Computational Research for Drug Design and Material Science, Department of Chemistry, European University of Bangladesh, Dhaka, Bangladesh
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, Assam, India
| | | | - Joshuan J. Barboza
- Escuela de Medicina, Universidad Cesar Vallejo, Trujillo, Peru
- *Correspondence: Joshuan J. Barboza, ; Ranjit Sah,
| | - Bijaya Kumar Padhi
- Department of Community Medicine, School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjit Sah
- Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
- Dr. D.Y Patil Medical College, Hospital and Research Centre, Pune, Maharashtra, India
- Green City Hospital, Tokha, Nepal
- *Correspondence: Joshuan J. Barboza, ; Ranjit Sah,
| |
Collapse
|
16
|
Parodi A, Righetti G, Pesce E, Salis A, Tomati V, Pastorino C, Tasso B, Benvenuti M, Damonte G, Pedemonte N, Cichero E, Millo E. Journey on VX-809-Based Hybrid Derivatives towards Drug-like F508del-CFTR Correctors: From Molecular Modeling to Chemical Synthesis and Biological Assays. Pharmaceuticals (Basel) 2022; 15:ph15030274. [PMID: 35337072 PMCID: PMC8955485 DOI: 10.3390/ph15030274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease affecting the lungs and pancreas and causing progressive damage. CF is caused by mutations abolishing the function of CFTR, a protein whose role is chloride’s mobilization in the epithelial cells of various organs. Recently a therapy focused on small molecules has been chosen as a main approach to contrast CF, designing and synthesizing compounds acting as misfolding (correctors) or defective channel gating (potentiators). Multi-drug therapies have been tested with different combinations of the two series of compounds. Previously, we designed and characterized two series of correctors, namely, hybrids, which were conceived including the aminoarylthiazole (AAT) core, merged with the benzodioxole carboxamide moiety featured by VX-809. In this paper, we herein proceeded with molecular modeling studies guiding the design of a new third series of hybrids, featuring structural variations at the thiazole moiety and modifications on position 4. These derivatives were tested in different assays including a YFP functional assay on models F508del-CFTR CFBE41o-cells, alone and in combination with VX-445, and by using electrophysiological techniques on human primary bronchial epithelia to demonstrate their F508del-CFTR corrector ability. This study is aimed (i) at identifying three molecules (9b, 9g, and 9j), useful as novel CFTR correctors with a good efficacy in rescuing the defect of F508del-CFTR; and (ii) at providing useful information to complete the structure–activity study within all the three series of hybrids as possible CFTR correctors, supporting the development of pharmacophore modelling studies, taking into account all the three series of hybrids. Finally, in silico evaluation of the hybrids pharmacokinetic (PK) properties contributed to highlight hybrid developability as drug-like correctors.
Collapse
Affiliation(s)
- Alice Parodi
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (A.P.); (A.S.); (M.B.); (G.D.)
| | - Giada Righetti
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.R.); (B.T.)
| | - Emanuela Pesce
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (E.P.); (V.T.); (N.P.)
| | - Annalisa Salis
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (A.P.); (A.S.); (M.B.); (G.D.)
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (E.P.); (V.T.); (N.P.)
| | - Cristina Pastorino
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DI-NOGMI), University of Genoa, 16132 Genoa, Italy;
| | - Bruno Tasso
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.R.); (B.T.)
| | - Mirko Benvenuti
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (A.P.); (A.S.); (M.B.); (G.D.)
| | - Gianluca Damonte
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (A.P.); (A.S.); (M.B.); (G.D.)
| | - Nicoletta Pedemonte
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (E.P.); (V.T.); (N.P.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.R.); (B.T.)
- Correspondence: (E.C.); (E.M.)
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (A.P.); (A.S.); (M.B.); (G.D.)
- Correspondence: (E.C.); (E.M.)
| |
Collapse
|
17
|
Detailed Analyses of Molecular Interactions between Favipiravir and RNA Viruses In Silico. Viruses 2022; 14:v14020338. [PMID: 35215932 PMCID: PMC8879546 DOI: 10.3390/v14020338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 02/05/2023] Open
Abstract
There are currently no antiviral agents for human metapneumovirus (HMPV), respiratory syncytial virus (RSV), mumps virus (MuV), or measles virus (MeV). Favipiravir has been developed as an anti-influenza agent, and this agent may be effective against these viruses in vitro. However, the molecular mechanisms through which the agent affects virus replication remain to be fully elucidated. Thus, to clarify the detailed molecular interactions between favipiravir and the RNA-dependent RNA polymerase (RdRp) of HMPV, RSV, MuV, MeV, and influenza virus, we performed in silico studies using authentic bioinformatics technologies. As a result, we found that the active form of favipiravir (favipiravir ribofuranosyl-5′-triphosphate [F-RTP]) can bind to the RdRp active sites of HMPV, RSV, MuV, and MeV. The aspartic acid residue of RdRp active sites was involved in the interaction. Moreover, F-RTP was incorporated into the growing viral RNA chain in the presence of nucleotide triphosphate and magnesium ions. The results suggested that favipiravir shows two distinct mechanisms in various viruses: RdRp active site inhibition and/or genome replication inhibition.
Collapse
|