1
|
Olivieri D, Verboni M, Benedetti S, Paderni D, Carfagna C, Duranti A, Lucarini S. New cinnamic acid sugar esters as potential UVB filters: Synthesis, cytotoxicity, and physicochemical properties. Carbohydr Res 2025; 550:109405. [PMID: 39869948 DOI: 10.1016/j.carres.2025.109405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/29/2025]
Abstract
Cinnamic Acid Sugar Ester Derivatives (CASEDs) are a class of natural compounds that exhibit several interesting biological activities. However, to date, no examples of their use in sunscreen formulations have been reported. Here, we describe the synthesis of a series of novel cinnamic acid esters of glucose (4a-g), ribose (4h) and lactose (4i) starting from the respective acetals 3. The latter were obtained through oxidative alkoxycarbonylation of olefins. For all compounds 3 and 4, UV-Vis spectra were recorded and lipophilicity (i.e., clogP) and cytotoxicity were evaluated. All but one of the synthesized compounds were found to be non-cytotoxic at the concentrations tested and, as expected, absorption spectra depended only on the substituents on the aromatic ring. Finally, the ad hoc synthesized compound 3k, featuring a 4-methoxy substituent on the phenyl ring and a 1,2-O-isopropylidene ribose moiety, provided the most promising results for a possible use as a sunscreen. Indeed, its Sun Protection Factor (SPF), calculated in vitro, was higher with respect to that of ethylhexyl methoxycinnamate (EHMC), which is already utilized in sun care products. Moreover, 3k showed greater antioxidant properties than EHMC, effectively protecting keratinocytes against H2O2-induced oxidative damage. At the same time, it showed no cytotoxic effects and preserved cellular metabolic activity and protein content. Based on these results, we believe that CASEDs could find valid applications in the skincare and cosmetics sectors.
Collapse
Affiliation(s)
- Diego Olivieri
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Campus Scientifico E. Mattei, via Ca' Le Suore 2, 61029, Urbino, PU, Italy.
| | - Michele Verboni
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Campus Scientifico E. Mattei, via Ca' Le Suore 2, 61029, Urbino, PU, Italy
| | - Serena Benedetti
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Campus Scientifico E. Mattei, via Ca' Le Suore 2, 61029, Urbino, PU, Italy
| | - Daniele Paderni
- Department of Pure and Applied Sciences "Carlo Bo", Campus Scientifico E. Mattei, via Ca' Le Suore 2, 61029, Urbino, PU, Italy
| | - Carla Carfagna
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, 40129, Bologna, BO, Italy
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Campus Scientifico E. Mattei, via Ca' Le Suore 2, 61029, Urbino, PU, Italy
| | - Simone Lucarini
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Campus Scientifico E. Mattei, via Ca' Le Suore 2, 61029, Urbino, PU, Italy.
| |
Collapse
|
2
|
Verboni M, Perinelli DR, Buono A, Campana R, Sisti M, Duranti A, Lucarini S. Sugar-Based Monoester Surfactants: Synthetic Methodologies, Properties, and Biological Activities. Antibiotics (Basel) 2023; 12:1500. [PMID: 37887201 PMCID: PMC10604170 DOI: 10.3390/antibiotics12101500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Glycolipids are biocompatible and biodegradable amphiphilic compounds characterized by a great scientific interest for their potential applications in various technological areas, including pharmaceuticals, cosmetics, agriculture, and food production. This report summarizes the available synthetic methodologies, physicochemical properties, and biological activity of sugar fatty acid ester surfactants, with a particular focus on 6-O-glucose, 6-O-mannose, 6-O-sucrose, and 6'-O-lactose ones. In detail, the synthetic approaches to this class of compounds, such as enzymatic lipase-catalyzed and traditional chemical (e.g., acyl chloride, Steglich, Mitsunobu) esterifications, are reported. Moreover, aspects related to the surface activity of these amphiphiles, such as their ability to decrease surface tension, critical micelle concentration, and emulsifying and foaming ability, are described. Biological applications with a focus on the permeability-enhancing effect across the skin or mucosa, antimicrobial and antifungal activities, as well as antibiofilm properties, are also presented. The information reported here on sugar-based ester surfactants is helpful to broaden the interest and the possible innovative applications of this class of amphiphiles in different technological fields in the future.
Collapse
Affiliation(s)
- Michele Verboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Diego Romano Perinelli
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Alessandro Buono
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Raffaella Campana
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Maurizio Sisti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Simone Lucarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| |
Collapse
|
3
|
Verboni M, Perinelli DR, Qiu CY, Tiboni M, Aluigi A, Lucarini S, Lam JKW, Duranti A. Synthesis and Properties of Sucrose- and Lactose-Based Aromatic Ester Surfactants as Potential Drugs Permeability Enhancers. Pharmaceuticals (Basel) 2023; 16:223. [PMID: 37259370 PMCID: PMC9964938 DOI: 10.3390/ph16020223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 10/28/2023] Open
Abstract
The delivery of therapeutics across biological membranes (e.g., mucosal barriers) by avoiding invasive routes (e.g., injection) remains a challenge in the pharmaceutical field. As such, there is the need to discover new compounds that act as drug permeability enhancers with a favorable toxicological profile. A valid alternative is represented by the class of sugar-based ester surfactants. In this study, sucrose and lactose alkyl aromatic and aromatic ester derivatives have been synthesized with the aim to characterize them in terms of their physicochemical properties, structure-property relationship, and cytotoxicity, and to test their ability as permeability enhancer agents across Calu-3 cells. All of the tested surfactants showed no remarkable cytotoxic effect on Calu-3 cells when applied both below and above their critical micelle concentration. Among the explored molecules, lactose p-biphenyl benzoate (URB1420) and sucrose p-phenyl benzoate (URB1481) cause a reversible ~30% decrease in transepithelial electrical resistance (TEER) with the respect to the basal value. The obtained result matches with the increased in vitro permeability coefficients (Papp) calculated for FTIC-dextran across Calu-3 cells in the presence of 4 mM solutions of these surfactants. Overall, this study proposes sucrose- and lactose-based alkyl aromatic and aromatic ester surfactants as novel potential and safe permeation enhancers for pharmaceutical applications.
Collapse
Affiliation(s)
- Michele Verboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, PU, Italy
| | - Diego Romano Perinelli
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Carol Yingshan Qiu
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, PU, Italy
| | - Annalisa Aluigi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, PU, Italy
| | - Simone Lucarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, PU, Italy
| | - Jenny K. W. Lam
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, PU, Italy
| |
Collapse
|
4
|
Verboni M, Sisti M, Campana R, Benedetti S, Palma F, Potenza L, Lucarini S, Duranti A. Synthesis and Biological Evaluation of 6- O-Sucrose Monoester Glycolipids as Possible New Antifungal Agents. Pharmaceuticals (Basel) 2023; 16:136. [PMID: 37259288 PMCID: PMC9966131 DOI: 10.3390/ph16020136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 10/28/2023] Open
Abstract
A small library of 6-O-sucrose monoester surfactants has been synthesized and tested against various microorganisms. The synthetic procedure involved a modified Mitsunobu reaction, which showed improved results compared to those present in the literature (higher yields and larger scope). The antifungal activities of most of these glycolipids were satisfactory. In particular, sucrose palmitoleate (URB1537) showed good activity against Candida albicans ATCC 10231, Fusarium spp., and Aspergillus fumigatus IDRAH01 (MIC value: 16, 32, 64 µg/mL, respectively), and was further characterized through radical scavenging, anti-inflammatory, and biocompatibility tests. URB1537 has been shown to control the inflammatory response and to have a safe profile.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Simone Lucarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | | |
Collapse
|
5
|
Enzymatic Production of Lauroyl and Stearoyl Monoesters of d-Xylose, l-Arabinose, and d-Glucose as Potential Lignocellulosic-Derived Products, and Their Evaluation as Antimicrobial Agents. Catalysts 2022. [DOI: 10.3390/catal12060610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Forestry and agricultural industries constitute highly relevant economic activities globally. They generate large amounts of residues rich in lignocellulose that have the potential to be valorized and used in different industrial processes. Producing renewable fuels and high-value-added compounds from lignocellulosic biomass is a key aspect of sustainable strategies and is central to the biorefinery concept. In this study, the use of biomass-derived monosaccharides for the enzymatic synthesis of sugar fatty acid esters (SFAEs) with antimicrobial activity was investigated to valorize these agro-industrial residues. With the aim to evaluate if lignocellulosic monosaccharides could be substrates for the synthesis of SFAEs, d-xylose, l-arabinose, and d-glucose, lauroyl and stearoyl monoesters were synthetized by transesterification reactions catalyzed by Lipozyme RM IM as biocatalyst. The reactions were performed using commercial d-xylose, l-arabinose, and d-glucose separately as substrates, and a 74:13:13 mixture of these sugars. The proportion of monosaccharides in the latter mixture corresponds to the composition found in hemicellulose from sugarcane bagasse and switchgrass, as previously described in the literature. Products were characterized using nuclear magnetic resonance (NMR) spectroscopy and showed that only the primary hydroxyl group of these monosaccharides is involved in the esterification reaction. Antimicrobial activity assay using several microorganisms showed that 5-O-lauroyl-d-xylofuranose and 5-O-lauroyl-l-arabinofuranose have the ability to inhibit the growth of Gram-positive bacteria separately and in the products mix. Furthermore, 5-O-lauroyl-l-arabinofuranose was the only product that exhibited activity against Candida albicans yeast, and the four tested filamentous fungi. These results suggest that sugar fatty acid esters obtained from sustainable and renewable resources and produced by green methods are promising antimicrobial agents.
Collapse
|