1
|
Safarkhani M, Moghaddam SS, Taghavimandi F, Bagherzadeh M, Fatahi Y, Park U, Radmanesh F, Huh YS, Rabiee N. Bioengineered Smart Nanocarriers for Breast Cancer Treatment: Adorned Carbon-Based Nanocomposites with Silver and Palladium Complexes for Efficient Drug Delivery. ACS OMEGA 2024; 9:1183-1195. [PMID: 38222665 PMCID: PMC10785617 DOI: 10.1021/acsomega.3c07432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Biocompatible and bioactive carbon-based nanocomposites are ingeniously designed and fabricated with the aim of enhancing drug delivery applicability in breast cancer treatment. Reduced graphene oxide (rGO) and multiwalled carbon nanotubes (MWCNTs) are utilized as nanocarriers for increasing penetrability into cells and the loading capacity. What sets our study apart is the strategic incorporation of the two different complexes of silver (AgL2) and palladium (PdL2) with the carboxamide-based ligand C9H7N3OS (L), which have been synthesized and decorated on nanocarriers alongside doxorubicin (DOX) for stabilizing DOX by π-π interactions and hydrogen bonding. Although DOX is a well-known cancer therapy agent, the efficacy of DOX is hindered owing to drug resistance, poor internalization, and limited site specificity. Aside from stabilizing DOX on nanocarriers, our carbon-based nanocarriers are tailored to act as a precision-guided missile, strategically by adorning with target-sensitive complexes. Based on the literature, carboxamide ligands can connect to overexpressed receptors on cancerous cells and inhibit them from proliferation signaling. Also, the complexes have an antibacterial activity that can control the infection caused by decreasing white blood cells and necrosis of cancerous cells. A high-concentration cytotoxicity assay revealed that decorating PdL2 on a DOX-containing nanocarrier not only increased cytotoxicity to breast cancerous cell lines (MDA-MB-231 and MCF-7) but also revealed higher cell viability on a normal cell line (MCF-10A). The drug release screening results showed that the presence of PdL2 led to 72 h correlate release behavior in acidic and physiological pH profiles, while the AgL2-containing nanocomposite showed an analogue behavior for just 6 h and the release of DOX continued and after about 100 h hit the top.
Collapse
Affiliation(s)
- Moein Safarkhani
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon 402-751, Republic of Korea
- Department
of Chemistry, Sharif University of Technology, Tehran 11155-9465, Iran
| | | | - Fahimeh Taghavimandi
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon 402-751, Republic of Korea
| | - Mojtaba Bagherzadeh
- Department
of Chemistry, Sharif University of Technology, Tehran 11155-9465, Iran
| | - Yousef Fatahi
- Nanotechnology
Research Centre, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 1416753955, Iran
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1416753955, Iran
- Universal
Scientific Education and Research Network (USERN), Tehran 1416753955, Iran
| | - Uichang Park
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon 402-751, Republic of Korea
| | - Fatemeh Radmanesh
- Uro-Oncology
Research Center, Tehran University of Medical
Sciences, Tehran 1416753955, Iran
- Department
of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology,
ACECR, Tehran 16635-14, Iran
| | - Yun Suk Huh
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon 402-751, Republic of Korea
| | - Navid Rabiee
- School
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
2
|
Patel PJ, Patel SG, Upadhyay DB, Ravi L, Dhanasekaran A, Patel HM. An efficient, catalyst-free and aqueous ethanol-mediated synthesis of 5-((2-aminothiazol-5-yl)(phenyl)methyl)-6-hydroxypyrimidine-2,4(1 H,3 H)-dione derivatives and their antioxidant activity. RSC Adv 2023; 13:24466-24473. [PMID: 37593670 PMCID: PMC10427891 DOI: 10.1039/d3ra03998f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
In this study, we effectively developed a catalyst-free multicomponent synthesis of 5-((2-aminothiazol-5-yl)(phenyl)methyl)-6-hydroxypyrimidine-2,4(1H,3H)-dione derivatives employing 2-aminothiazole, N',N'-dimethyl barbituric acid/barbituric acid and different aldehydes at 80 °C in an aqueous ethanol medium (1 : 1) using group-assisted purification (GAP) chemistry. The essential characteristics of this methodology include superior green credential parameters, metal-free multicomponent synthesis, faster reaction times, greater product yields, simple product purification without column chromatography and higher product yields. All of the synthesized compounds were analyzed against the HepG2 cell line. Compounds 4j and 4k shows good anti-proliferative effects on HepG2 cells. Furthermore, the ABTS and DPPH scavenging assays were used to determine the antioxidant activity of all compounds (4a-r). In both ABTS and DPPH radical scavenging assays, compounds 4e, 4i, 4j, 4o and 4r exhibit excellent potency compared to the standard ascorbic acid.
Collapse
Affiliation(s)
- Paras J Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar 388120 Gujarat India
| | - Subham G Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar 388120 Gujarat India
| | - Dipti B Upadhyay
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar 388120 Gujarat India
| | - Logeswari Ravi
- Centre for Biotechnology, Anna University Chennai Tamil Nadu India
| | | | - Hitendra M Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar 388120 Gujarat India
| |
Collapse
|
3
|
Juhás M, Bachtíková A, Nawrot DE, Hatoková P, Pallabothula VSK, Diepoltová A, Janďourek O, Bárta P, Konečná K, Paterová P, Šesták V, Zitko J. Correction: Juhás et al. Improving Antimicrobial Activity and Physico-Chemical Properties by Isosteric Replacement of 2-Aminothiazole with 2-Aminooxazole. Pharmaceuticals 2022, 15, 580. Pharmaceuticals (Basel) 2023; 16:ph16030384. [PMID: 36986575 DOI: 10.3390/ph16030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
In the original publication [...]
Collapse
Affiliation(s)
- Martin Juhás
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Andrea Bachtíková
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Daria Elżbieta Nawrot
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Paulína Hatoková
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | | | - Adéla Diepoltová
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Ondřej Janďourek
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Pavel Bárta
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Klára Konečná
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Pavla Paterová
- Department of Clinical Microbiology, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic
| | - Vít Šesták
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Králové, University Hospital, Sokolská 581, 500 05 Hradec Králové, Czech Republic
| | - Jan Zitko
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
4
|
Haindongo EH, Ndakolo D, Hedimbi M, Vainio O, Hakanen A, Vuopio J. Antimicrobial resistance prevalence of Escherichia coli and Staphylococcus aureus amongst bacteremic patients in Africa: a systematic review. J Glob Antimicrob Resist 2023; 32:35-43. [PMID: 36526264 DOI: 10.1016/j.jgar.2022.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Antimicrobial resistance (AMR) is a global concern among infectious diseases. Bloodstream infections can potentially become life-threatening if they become untreatable with conventional antimicrobials. This review aims to provide an understanding of the AMR prevalence and trends of common bacteremic pathogens, namely Escherichia coli and Staphylococcus aureus in the World Health Organization (WHO) Africa region. METHODS PubMed and Google Scholar were searched using relevant keywords for published human studies (excluding case reports and reviews) reporting bacteremic AMR data on the pathogens of interest between 2008 and 2019. Two reviewers independently screened the articles against a pre-defined eligibility criterion. Data extraction and analysis were achieved with different platforms: Covidence, Excel, R version 3.6.3, and QGIS v3.4.5. The pooled prevalence, 95% confidence intervals, and I2 index (a measure of heterogeneity) were calculated for the various pathogen-antibiotic combinations. RESULTS Five hundred sixty-two papers were retrieved, with 27 papers included in the final analysis. Only 23.4% (11/47) of member states of the WHO African region had reports on AMR in bacteremia. The Clinical and Laboratory Standards Institute (CLSI) (78.5%) was the most common standard used in the region. For E. coli, the pooled resistance was: cefotaxime (42%), imipenem (4%), meropenem (0%), and colistin (0%). For S. aureus, the calculated pooled resistance was cloxacillin (34%), oxacillin (12%), and vancomycin (0%). There was a high degree of variation across studies (I2 > 90%). CONCLUSION The pooled resistance rates indicate a concerning degree of methicillin-resistant and Extended Spectrum-ß-lactamase-producing pathogens. The paucity of AMR data also presents challenges for a comprehensive understanding of the situation in the region. Continent-wide and standardized surveillance efforts therefore need strengthening.
Collapse
Affiliation(s)
- Erastus Hanganeni Haindongo
- School of Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia; Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Diana Ndakolo
- School of Pharmacy, Faculty of Health Sciences, University of Namibia, Windhoek, Namibia; Pharmaceutical Services, Ministry of Health and Social Services, Namibia
| | - Marius Hedimbi
- School of Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia; Graduate School of Business and Postgraduate, International University of Management, Namibia
| | - Olli Vainio
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Antti Hakanen
- Institute of Biomedicine, University of Turku, Turku, Finland; Clinical Microbiology Laboratory, Turku University Hospital, Turku, Finland
| | - Jaana Vuopio
- Institute of Biomedicine, University of Turku, Turku, Finland; Clinical Microbiology Laboratory, Turku University Hospital, Turku, Finland
| |
Collapse
|
5
|
Synthesis, Characterization, and Biological Evaluation of Novel N-{4-[(4-Bromophenyl)sulfonyl]benzoyl}-L-valine Derivatives. Processes (Basel) 2022. [DOI: 10.3390/pr10091800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this article, we present the design and synthesis of novel compounds, containing in their molecules an L-valine residue and a 4-[(4-bromophenyl)sulfonyl]phenyl moiety, which belong to N-acyl-α-amino acids, 4H-1,3-oxazol-5-ones, 2-acylamino ketones, and 1,3-oxazoles chemotypes. The synthesized compounds were characterized through elemental analysis, MS, NMR, UV/VIS, and FTIR spectroscopic techniques, the data obtained are in accordance with the assigned structures. Their purities were verified by reversed-phase HPLC. The new compounds were tested for antimicrobial action against bacterial and fungal strains for antioxidant activity by DPPH, ABTS, and ferric reducing power assays, and for toxicity on freshwater cladoceran Daphnia magna Straus. Furthermore, in silico studies were performed concerning the potential antimicrobial effect and toxicity. The results of antimicrobial activity, antioxidant effect, and toxicity assays, as well as of in silico analysis revealed a promising potential of N-{4-[(4-bromophenyl)sulfonyl]benzoyl}-L-valine and 2-{4-[(4-bromophenyl)sulfonyl]phenyl}-4-isopropyl-4H-1,3-oxazol-5-one for developing novel antimicrobial agents to fight Gram-positive pathogens, and particularly Enterococcus faecium biofilm-associated infections.
Collapse
|