1
|
Vanitha K, Mahesh TR, Kumar VV, Guluwadi S. Enhanced tuberculosis detection using Vision Transformers and explainable AI with a Grad-CAM approach on chest X-rays. BMC Med Imaging 2025; 25:96. [PMID: 40128729 PMCID: PMC11934573 DOI: 10.1186/s12880-025-01630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a leading global health challenge, especially in low-resource settings. Accurate diagnosis from chest X-rays is critical yet challenging due to subtle manifestations of TB, particularly in its early stages. Traditional computational methods, primarily using basic convolutional neural networks (CNNs), often require extensive pre-processing and struggle with generalizability across diverse clinical environments. This study introduces a novel Vision Transformer (ViT) model augmented with Gradient-weighted Class Activation Mapping (Grad-CAM) to enhance both diagnostic accuracy and interpretability. The ViT model utilizes self-attention mechanisms to extract long-range dependencies and complex patterns directly from the raw pixel information, whereas Grad-CAM offers visual explanations of model decisions about highlighting significant regions in the X-rays. The model contains a Conv2D stem for initial feature extraction, followed by many transformer encoder blocks, thereby significantly boosting its ability to learn discriminative features without any pre-processing. Performance testing on a validation set had an accuracy of 0.97, recall of 0.99, and F1-score of 0.98 for TB patients. On the test set, the model has accuracy of 0.98, recall of 0.97, and F1-score of 0.98, which is better than existing methods. The addition of Grad-CAM visuals not only improves the transparency of the model but also assists radiologists in assessing and verifying AI-driven diagnoses. These results demonstrate the model's higher diagnostic precision and potential for clinical application in real-world settings, providing a massive improvement in the automated detection of TB.
Collapse
Affiliation(s)
- K Vanitha
- Department of Computer Science and Engineering, Faculty of Engineering, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, India
| | - T R Mahesh
- Department of Computer Science and Engineering, JAIN (Deemed-to-be University), Bengaluru, 562112, India
| | - V Vinoth Kumar
- School of Computer Science, Vellore Institute of Technology University, Vellore, 632014, India
| | - Suresh Guluwadi
- Adama Science and Technology University, Adama, 302120, Ethiopia.
| |
Collapse
|
2
|
Hansun S, Argha A, Bakhshayeshi I, Wicaksana A, Alinejad-Rokny H, Fox GJ, Liaw ST, Celler BG, Marks GB. Diagnostic Performance of Artificial Intelligence-Based Methods for Tuberculosis Detection: Systematic Review. J Med Internet Res 2025; 27:e69068. [PMID: 40053773 PMCID: PMC11928776 DOI: 10.2196/69068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 02/07/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Tuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of the various TB diagnostic tools introduced is deemed sufficient on its own for the diagnostic pathway, so various artificial intelligence (AI)-based methods have been developed to address this issue. OBJECTIVE We aimed to provide a comprehensive evaluation of AI-based algorithms for TB detection across various data modalities. METHODS Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) 2020 guidelines, we conducted a systematic review to synthesize current knowledge on this topic. Our search across 3 major databases (Scopus, PubMed, Association for Computing Machinery [ACM] Digital Library) yielded 1146 records, of which we included 152 (13.3%) studies in our analysis. QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies version 2) was performed for the risk-of-bias assessment of all included studies. RESULTS Radiographic biomarkers (n=129, 84.9%) and deep learning (DL; n=122, 80.3%) approaches were predominantly used, with convolutional neural networks (CNNs) using Visual Geometry Group (VGG)-16 (n=37, 24.3%), ResNet-50 (n=33, 21.7%), and DenseNet-121 (n=19, 12.5%) architectures being the most common DL approach. The majority of studies focused on model development (n=143, 94.1%) and used a single modality approach (n=141, 92.8%). AI methods demonstrated good performance in all studies: mean accuracy=91.93% (SD 8.10%, 95% CI 90.52%-93.33%; median 93.59%, IQR 88.33%-98.32%), mean area under the curve (AUC)=93.48% (SD 7.51%, 95% CI 91.90%-95.06%; median 95.28%, IQR 91%-99%), mean sensitivity=92.77% (SD 7.48%, 95% CI 91.38%-94.15%; median 94.05% IQR 89%-98.87%), and mean specificity=92.39% (SD 9.4%, 95% CI 90.30%-94.49%; median 95.38%, IQR 89.42%-99.19%). AI performance across different biomarker types showed mean accuracies of 92.45% (SD 7.83%), 89.03% (SD 8.49%), and 84.21% (SD 0%); mean AUCs of 94.47% (SD 7.32%), 88.45% (SD 8.33%), and 88.61% (SD 5.9%); mean sensitivities of 93.8% (SD 6.27%), 88.41% (SD 10.24%), and 93% (SD 0%); and mean specificities of 94.2% (SD 6.63%), 85.89% (SD 14.66%), and 95% (SD 0%) for radiographic, molecular/biochemical, and physiological types, respectively. AI performance across various reference standards showed mean accuracies of 91.44% (SD 7.3%), 93.16% (SD 6.44%), and 88.98% (SD 9.77%); mean AUCs of 90.95% (SD 7.58%), 94.89% (SD 5.18%), and 92.61% (SD 6.01%); mean sensitivities of 91.76% (SD 7.02%), 93.73% (SD 6.67%), and 91.34% (SD 7.71%); and mean specificities of 86.56% (SD 12.8%), 93.69% (SD 8.45%), and 92.7% (SD 6.54%) for bacteriological, human reader, and combined reference standards, respectively. The transfer learning (TL) approach showed increasing popularity (n=89, 58.6%). Notably, only 1 (0.7%) study conducted domain-shift analysis for TB detection. CONCLUSIONS Findings from this review underscore the considerable promise of AI-based methods in the realm of TB detection. Future research endeavors should prioritize conducting domain-shift analyses to better simulate real-world scenarios in TB detection. TRIAL REGISTRATION PROSPERO CRD42023453611; https://www.crd.york.ac.uk/PROSPERO/view/CRD42023453611.
Collapse
Affiliation(s)
- Seng Hansun
- School of Clinical Medicine, South West Sydney, UNSW Medicine & Health, UNSW Sydney, Sydney, Australia
- Woolcock Vietnam Research Group, Woolcock Institute of Medical Research, Sydney, Australia
| | - Ahmadreza Argha
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, Australia
- Tyree Institute of Health Engineering, UNSW Sydney, Sydney, Australia
- Ageing Future Institute, UNSW Sydney, Sydney, Australia
| | - Ivan Bakhshayeshi
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, Australia
- BioMedical Machine Learning Lab, Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, Australia
| | - Arya Wicaksana
- Informatics Department, Universitas Multimedia Nusantara, Tangerang, Indonesia
| | - Hamid Alinejad-Rokny
- Tyree Institute of Health Engineering, UNSW Sydney, Sydney, Australia
- Ageing Future Institute, UNSW Sydney, Sydney, Australia
- BioMedical Machine Learning Lab, Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, Australia
| | - Greg J Fox
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Siaw-Teng Liaw
- School of Population Health and School of Clinical Medicine, UNSW Sydney, Sydney, Australia
| | - Branko G Celler
- Biomedical Systems Research Laboratory, School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, Australia
| | - Guy B Marks
- School of Clinical Medicine, South West Sydney, UNSW Medicine & Health, UNSW Sydney, Sydney, Australia
- Woolcock Vietnam Research Group, Woolcock Institute of Medical Research, Sydney, Australia
- Burnet Institute, Melbourne, Australia
| |
Collapse
|
3
|
Parveen Rahamathulla M, Sam Emmanuel WR, Bindhu A, Mustaq Ahmed M. YOLOv8's advancements in tuberculosis identification from chest images. Front Big Data 2024; 7:1401981. [PMID: 38994120 PMCID: PMC11236731 DOI: 10.3389/fdata.2024.1401981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
Tuberculosis (TB) is a chronic and pathogenic disease that leads to life-threatening situations like death. Many people have been affected by TB owing to inaccuracy, late diagnosis, and deficiency of treatment. The early detection of TB is important to protect people from the severity of the disease and its threatening consequences. Traditionally, different manual methods have been used for TB prediction, such as chest X-rays and CT scans. Nevertheless, these approaches are identified as time-consuming and ineffective for achieving optimal results. To resolve this problem, several researchers have focused on TB prediction. Conversely, it results in a lack of accuracy, overfitting of data, and speed. For improving TB prediction, the proposed research employs the Selection Focal Fusion (SFF) block in the You Look Only Once v8 (YOLOv8, Ultralytics software company, Los Angeles, United States) object detection model with attention mechanism through the Kaggle TBX-11k dataset. The YOLOv8 is used for its ability to detect multiple objects in a single pass. However, it struggles with small objects and finds it impossible to perform fine-grained classifications. To evade this problem, the proposed research incorporates the SFF technique to improve detection performance and decrease small object missed detection rates. Correspondingly, the efficacy of the projected mechanism is calculated utilizing various performance metrics such as recall, precision, F1Score, and mean Average Precision (mAP) to estimate the performance of the proposed framework. Furthermore, the comparison of existing models reveals the efficiency of the proposed research. The present research is envisioned to contribute to the medical world and assist radiologists in identifying tuberculosis using the YOLOv8 model to obtain an optimal outcome.
Collapse
Affiliation(s)
- Mohamudha Parveen Rahamathulla
- Department of Basic Medical Science, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - W. R. Sam Emmanuel
- Department of Computer Science and Research Centre, Nesamony Memorial Christian College, Marthandam, Tamil Nadu, India
| | - A. Bindhu
- Department of Computer Science, Infant Jesus College of Arts and Science for Women, Mulagumoodu, Tamil Nadu, India
| | - Mohamed Mustaq Ahmed
- Department of Information Technology, The New College, Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
K SP, Parivakkam Mani A, S G, Yadav S. Advancements in Artificial Intelligence for the Diagnosis of Multidrug Resistance and Extensively Drug-Resistant Tuberculosis: A Comprehensive Review. Cureus 2024; 16:e60280. [PMID: 38872656 PMCID: PMC11173349 DOI: 10.7759/cureus.60280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 06/15/2024] Open
Abstract
Tuberculosis (TB) remains a significant global health concern, particularly with the emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). Traditional methods for diagnosing drug resistance in TB are time-consuming and often lack accuracy, leading to delays in appropriate treatment initiation and exacerbating the spread of drug-resistant strains. In recent years, artificial intelligence (AI) techniques have shown promise in revolutionizing TB diagnosis, offering rapid and accurate identification of drug-resistant strains. This comprehensive review explores the latest advancements in AI applications for the diagnosis of MDR-TB and XDR-TB. We discuss the various AI algorithms and methodologies employed, including machine learning, deep learning, and ensemble techniques, and their comparative performances in TB diagnosis. Furthermore, we examine the integration of AI with novel diagnostic modalities such as whole-genome sequencing, molecular assays, and radiological imaging, enhancing the accuracy and efficiency of TB diagnosis. Challenges and limitations surrounding the implementation of AI in TB diagnosis, such as data availability, algorithm interpretability, and regulatory considerations, are also addressed. Finally, we highlight future directions and opportunities for the integration of AI into routine clinical practice for combating drug-resistant TB, ultimately contributing to improved patient outcomes and enhanced global TB control efforts.
Collapse
Affiliation(s)
- Shanmuga Priya K
- Department of Pulmonology, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, IND
| | - Anbumaran Parivakkam Mani
- Department of Respiratory Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Geethalakshmi S
- Department of Microbiology, Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, IND
| | - Sankalp Yadav
- Department of Medicine, Shri Madan Lal Khurana Chest Clinic, New Delhi, IND
| |
Collapse
|
5
|
Fang WJ, Tang SN, Liang RY, Zheng QT, Yao DQ, Hu JX, Song M, Zheng GP, Rosenthal A, Tartakovsky M, Lu PX, Wáng YXJ. Differences in pulmonary nodular consolidation and pulmonary cavity among drug-sensitive, rifampicin-resistant and multi-drug resistant tuberculosis patients: the Guangzhou computerized tomography study. Quant Imaging Med Surg 2024; 14:1010-1021. [PMID: 38223080 PMCID: PMC10783999 DOI: 10.21037/qims-23-694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/28/2023] [Indexed: 01/16/2024]
Abstract
Background Pulmonary nodular consolidation (PN) and pulmonary cavity (PC) may represent the two most promising imaging signs in differentiating multidrug-resistant (MDR)-pulmonary tuberculosis (PTB) from drug-sensitive (DS)-PTB. However, there have been concerns that literature described radiological feature differences between DS-PTB and MDR-PTB were confounded by that MDR-PTB cases tend to have a longer history. This study seeks to further clarify this point. Methods All cases were from the Guangzhou Chest Hospital, Guangzhou, China. We retrieved data of consecutive new MDR cases [n=46, inclusive of rifampicin-resistant (RR) cases] treated during the period of July 2020 and December 2021, and according to the electronic case archiving system records, the main PTB-related symptoms/signs history was ≤3 months till the first computed tomography (CT) scan in Guangzhou Chest Hospital was taken. To pair the MDR-PTB cases with assumed equal disease history length, we additionally retrieved data of 46 cases of DS-PTB patients. Twenty-two of the DS patients and 30 of the MDR patients were from rural communities. The first CT in Guangzhou Chest Hospital was analysed in this study. When the CT was taken, most cases had anti-TB drug treatment for less than 2 weeks, and none had been treated for more than 3 weeks. Results Apparent CT signs associated with chronicity were noted in 10 cases in the DS group (10/46) and 9 cases in the MDR group (10/46). Thus, the overall disease history would have been longer than the assumed <3 months. Still, the history length difference between DS patients and MDR patients in the current study might not be substantial. The lung volume involvement was 11.3%±8.3% for DS cases and 8.4%±6.6% for MDR cases (P=0.022). There was no statistical difference between DS cases and MDR cases both in PN prevalence and in PC prevalence. For positive cases, MDR cases had more PN number (mean of positive cases: 2.63 vs. 2.28, P=0.38) and PC number (mean of positive cases: 2.14 vs. 1.38, P=0.001) than DS cases. Receiver operating characteristic curve analysis shows, PN ≥4 and PC ≥3 had a specificity of 86% (sensitivity 25%) and 93% (sensitivity 36%), respectively, in suggesting the patient being a MDR cases. Conclusions A combination of PN and PC features allows statistical separation of DS and MDR cases.
Collapse
Affiliation(s)
- Wei-Jun Fang
- Department of Radiology, Guangzhou Chest Hospital, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Sheng-Nan Tang
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Rui-Yun Liang
- Department of Radiology, Guangzhou Chest Hospital, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Qiu-Ting Zheng
- Department of Medical Imaging, Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Dian-Qi Yao
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jin-Xing Hu
- Department of Tuberculosis, Guangzhou Chest Hospital, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Min Song
- Department of Radiology, Guangzhou Chest Hospital, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Guang-Ping Zheng
- Department of Radiology, The Third People’s Hospital of Shenzhen, Shenzhen, China
| | - Alex Rosenthal
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Michael Tartakovsky
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Pu-Xuan Lu
- Department of Medical Imaging, Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Yì Xiáng J. Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
6
|
Ali Z, Khan MA, Hamza A, Alzahrani AI, Alalwan N, Shabaz M, Khan F. A deep learning‐based x‐rayimaging diagnosis system for classification of tuberculosis, COVID‐19, and pneumonia traits using evolutionary algorithm. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY 2024; 34. [DOI: 10.1002/ima.23014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/08/2023] [Indexed: 08/25/2024]
Abstract
AbstractTo aid in detection of tuberculosis, researchers have concentrated on developing computer‐aided diagnostic technologies based on x‐ray imaging. Since it generates noninvasive standard‐of‐care data, a chest x‐ray image is one of the most often used diagnostic imaging modalities in computer‐aided solutions. Due to their significant interclass similarities and low intra‐class variation abnormalities, chest x‐ray pictures continue to pose difficulty for proper diagnosis. In this paper, a novel automated framework is proposed for the classification of tuberculosis, COVID‐19, and pneumonia from chest x‐ray images using deep learning and improved optimization technique. Two pre‐trained convolutional neural network models such as EfficientB0 and ResNet50 have been utilized and fine‐tuned based on the additional layers. Both models are trained with fixed hyperparameters on the selected datasets and obtained newly trained models. A novel feature selection technique has been proposed that selects the best features. In the novel version, distance and update position formulation has been modified. The selected features are further fused using a novel technique that is based on the serial and standard deviation threshold function. The experimental process of the proposed framework is conducted on three datasets and obtained an accuracy of 98.2%, 99.0%, and 98.7%, respectively. In addition, a detailed Wilcoxon signed‐rank analysis is conducted and shows the proposed method significance performance. Based on the results, it is concluded that the proposed method accuracy is improved after the fusion process. In addition, the comparison with recent techniques shows the proposed method as more significant in terms of accuracy and precision rate.
Collapse
Affiliation(s)
- Zeeshan Ali
- Department of Computer Science HITEC University Taxila Pakistan
| | - Muhammad Attique Khan
- Department of Computer Science HITEC University Taxila Pakistan
- Department of Computer Science and Mathematics Lebanese American University Beirut Lebanon
| | - Ameer Hamza
- Department of Computer Science HITEC University Taxila Pakistan
| | | | - Nasser Alalwan
- Computer Science Department, Community College King Saud University Riyadh Saudi Arabia
| | - Mohammad Shabaz
- Model Institute of Engineering and Technology Jammu Jammu and Kashmir India
| | - Faheem Khan
- Department of Computer Engineering Gachon University Seongnam‐si South Korea
| |
Collapse
|
7
|
Feyisa DW, Ayano YM, Debelee TG, Schwenker F. Weak Localization of Radiographic Manifestations in Pulmonary Tuberculosis from Chest X-ray: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:6781. [PMID: 37571564 PMCID: PMC10422452 DOI: 10.3390/s23156781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023]
Abstract
Pulmonary tuberculosis (PTB) is a bacterial infection that affects the lung. PTB remains one of the infectious diseases with the highest global mortalities. Chest radiography is a technique that is often employed in the diagnosis of PTB. Radiologists identify the severity and stage of PTB by inspecting radiographic features in the patient's chest X-ray (CXR). The most common radiographic features seen on CXRs include cavitation, consolidation, masses, pleural effusion, calcification, and nodules. Identifying these CXR features will help physicians in diagnosing a patient. However, identifying these radiographic features for intricate disorders is challenging, and the accuracy depends on the radiologist's experience and level of expertise. So, researchers have proposed deep learning (DL) techniques to detect and mark areas of tuberculosis infection in CXRs. DL models have been proposed in the literature because of their inherent capacity to detect diseases and segment the manifestation regions from medical images. However, fully supervised semantic segmentation requires several pixel-by-pixel labeled images. The annotation of such a large amount of data by trained physicians has some challenges. First, the annotation requires a significant amount of time. Second, the cost of hiring trained physicians is expensive. In addition, the subjectivity of medical data poses a difficulty in having standardized annotation. As a result, there is increasing interest in weak localization techniques. Therefore, in this review, we identify methods employed in the weakly supervised segmentation and localization of radiographic manifestations of pulmonary tuberculosis from chest X-rays. First, we identify the most commonly used public chest X-ray datasets for tuberculosis identification. Following that, we discuss the approaches for weakly localizing tuberculosis radiographic manifestations in chest X-rays. The weakly supervised localization of PTB can highlight the region of the chest X-ray image that contributed the most to the DL model's classification output and help pinpoint the diseased area. Finally, we discuss the limitations and challenges of weakly supervised techniques in localizing TB manifestations regions in chest X-ray images.
Collapse
Affiliation(s)
- Degaga Wolde Feyisa
- Ethiopian Artificial Intelligence Institute, Addis Ababa P.O. Box 40782, Ethiopia; (D.W.F.); (Y.M.A.); (T.G.D.)
| | - Yehualashet Megersa Ayano
- Ethiopian Artificial Intelligence Institute, Addis Ababa P.O. Box 40782, Ethiopia; (D.W.F.); (Y.M.A.); (T.G.D.)
| | - Taye Girma Debelee
- Ethiopian Artificial Intelligence Institute, Addis Ababa P.O. Box 40782, Ethiopia; (D.W.F.); (Y.M.A.); (T.G.D.)
- Department of Electrical and Computer Engineering, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 120611, Ethiopia
| | - Friedhelm Schwenker
- Institute of Neural Information Processing, Ulm University, 89069 Ulm, Germany
| |
Collapse
|
8
|
A deep learning-based framework for automatic detection of drug resistance in tuberculosis patients. EGYPTIAN INFORMATICS JOURNAL 2023. [DOI: 10.1016/j.eij.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|