1
|
Zhang L, Li J, Feng M, Xu X, Tang W, Jiang Y, Xia Z, Liu H, Shen F, Li X, Jiang L. Tigecycline modulates LPS-induced inflammatory response in sepsis via NF-κB signalling pathways: Experimental insights into immune regulation. Int J Antimicrob Agents 2025; 66:107496. [PMID: 40139445 DOI: 10.1016/j.ijantimicag.2025.107496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Sepsis is associated with high morbidity and high mortality and has strongly motivated intense studies into its mechanisms. Antibiotics, aimed to eradicate bacteria, have some impact on the immune system due to anti-inflammatory properties. Tigecycline, an antibiotic of the glycylcycline class, is commonly used for severe infections. PURPOSE This study aimed to investigate tigecycline's mechanism on the inflammatory response of sepsis to find new targets for sepsis treatment. The objective included (i) to observe the changes in inflammatory factors in LPS (lipopolysaccharide) induced septic mice after tigecycline administration, (ii) to detect the effect of tigecycline on macrophages NF-κB (nuclear factor kappa B) signalling. METHODS For LPS-induced sepsis in mice and intervention with tigecycline, mice were first injected with tigecycline (6.5 mg/kg) via tail vein followed by LPS (15 mg/kg). Luminex analysis was performed on 16 mediators. NF-κB signalling pathway antibody chip detected the expression of target sites in macrophages of the LPS group and tigecycline + LPS group. RESULTS Tigecycline has inhibitory effects on LPS-induced inflammatory response in septic mice, decreasing the concentrations of IL (interleukin)-6, IL-27, TNF-α (tumour necrosis factor-α), TNF RII, IFN-γ (interferon-gamma), CCL5/RANTES (CC Motif Chemokine Ligand) while increasing IL-6Rα, IL-10, and TWEAK (TNF-related weak inducer of apoptosis). Tigecycline downregulated phosphorylation levels of key sites JNK (c-Jun N-terminal kinase)1/2/3, p-p65 (s468) and p-p105/p50 (s907) in NF-κB signalling. CONCLUSIONS Tigecycline may inhibit the excessive immune response induced by LPS in sepsis, which may cause a potential protective effect on the host through immune regulation.
Collapse
Affiliation(s)
- Lu Zhang
- Minhang Hospital, Fudan University, Shanghai, China
| | - Jun Li
- Department of Intensive Care Unit, Shanghai Deji Hospital, Shanghai, China
| | - Meiqing Feng
- School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaocheng Xu
- Minhang District of Shanghai Medical Emergency Center, Shanghai, China
| | - Weiyi Tang
- Minhang Hospital, Fudan University, Shanghai, China
| | | | - Zhuye Xia
- Minhang Hospital, Fudan University, Shanghai, China
| | - Hongjie Liu
- Minhang Hospital, Fudan University, Shanghai, China
| | - Feiyang Shen
- Minhang Hospital, Fudan University, Shanghai, China
| | - Xiang Li
- Minhang Hospital, Fudan University, Shanghai, China.
| | - Lijing Jiang
- Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Song W, Rahimian N, Hasanzade Bashkandi A. GRP78: A new promising candidate in colorectal cancer pathogenesis and therapy. Eur J Pharmacol 2025; 995:177308. [PMID: 39870235 DOI: 10.1016/j.ejphar.2025.177308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Colorectal cancer (CRC) is a significant global health challenge, marked by varying incidence and mortality rates across different regions. The pathogenesis of CRC involves multiple stages, including initiation, promotion, progression, and metastasis, influenced by genetic and epigenetic factors. The chaperone protein glucose-regulated protein 78 (GRP78), crucial in regulating the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress, plays a pivotal role in CRC pathogenesis. This review discusses the expression profile of GRP78 in CRC, highlighting its potential as a prognostic biomarker and its role in modulating the cellular mechanisms of CRC, including ER response regulation, cell proliferation, migration and invasion. The complex molecular interactions of GRP78 with key signaling pathways such as protein kinase B (Akt), Wnt, protein kinase R-like ER kinase (PERK), vascular endothelial growth factor (VEGF), and Kirsten rat sarcoma virus (Kras) are explored, elucidating its contributions to tumor survival, proliferation, invasion, and chemoresistance. GRP78's involvement in autophagy, glycolysis, and immune regulation further underscores its importance in CRC progression. The review also covers the therapeutic potential of targeting GRP78 in CRC, examining various natural products like curcumin, epigallocatechin gallate (EGCG), and aloe-emodin, which modulate GRP78 expression and activity. Additionally, GRP78's role in mediating resistance to chemotherapeutic agents like 5-fluorouracil (5-FU) and oxaliplatin is discussed, emphasizing its significance in the development of resistance mechanisms in CRC. In conclusion, GRP78 emerges as a central player in CRC pathogenesis and a promising target for therapeutic interventions aimed at improving treatment outcomes and overcoming chemoresistance in colorectal cancer.
Collapse
Affiliation(s)
- Wang Song
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China.
| | - Neda Rahimian
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
3
|
Lin L, Fu J, Yao H, Li Y, Wang Y, Shen H, Guan Y. Caffeic acid derivatives as elastase inhibitors: Mechanistic insights and therapeutic potentials. Int J Biol Macromol 2025; 309:143059. [PMID: 40222505 DOI: 10.1016/j.ijbiomac.2025.143059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/22/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Inflammation, a physiological defense mechanism, often involves the overproduction of elastase, a serine protease that degrades structural proteins, and contributes to inflammatory diseases such as chronic obstructive pulmonary disease and rheumatoid arthritis. This study explored the inhibitory effects of caffeic acid and its derivatives, chlorogenic acid and forsythiaside A, on elastase activity. Using enzyme kinetics, multi-spectroscopy, and molecular docking, we demonstrated that all three compounds competitively inhibited elastase, with forsythiaside A exhibiting the highest efficacy among them. Fluorescence and UV-vis spectra demonstrated that elastase interacted with these compounds, causing secondary structural changes. Thermodynamic analyses revealed that electrostatic forces dominated caffeic acid and chlorogenic acid interactions, whereas hydrogen bonding was key for forsythiaside A. Molecular docking also highlighted the role of ortho-phenolic hydroxyl and polyhydroxy groups in enhancing this inhibition. These findings provide molecular insights into the structure-activity relationships of these compounds, emphasizing their potential as scaffolds for developing safer and more effective elastase inhibitors.
Collapse
Affiliation(s)
- Lihao Lin
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Jinfeng Fu
- Department of Natural Organic Chemistry, College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Hongliu Yao
- Department of Natural Organic Chemistry, College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yongxue Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Yan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Haoyu Shen
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Yi Guan
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
4
|
Zhou G, Liu Z, Huang Y, Yang R, Guo X, Jia Y, Liu P, Li Z, Cui W. Colorimetric determination of tyrosinase activity and high-throughput screening of inhibitors based on in-situ formation of gold nanoparticles. Mikrochim Acta 2025; 192:326. [PMID: 40295455 DOI: 10.1007/s00604-025-07155-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025]
Abstract
A colorimetric method is presented for detecting tyrosinase activity and screening inhibitors, leveraging the in-situ formation of gold nanoparticles mediated by catechol. The active tyrosinase converses catechol into o-quinone leading to changes in both the size of AuNPs and their corresponding UV-Vis absorption spectrum as well as visual color. This enzyme-mediated alteration can be modulated by tyrosinase inhibitors through chemical regulation of enzyme activity. Based on these, facile detection of tyrosinase and high-throughput screening for its inhibitors can be achieved simply by visually observing color changes in solution. The proposed method is characterized by its sensitivity, simplicity, rapidity, and accuracy, allowing for quantitative determination of tyrosinase within the range 0.5 to 25 U/mL, with a detection limit of 0.038 U/mL. Furthermore, visual or instrumental observation of the color changes in gold nanoparticles enables high-throughput screening of inhibitors and calculation of their IC50 values. We anticipate that this approach will significantly contribute to tyrosinase research and facilitate the development, discovery, and high-throughput screening of effective inhibitors.
Collapse
Affiliation(s)
- Guohua Zhou
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, , Lingnan Normal University, Zhanjiang, 524048, Guangdong, China.
| | - Zhicheng Liu
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, , Lingnan Normal University, Zhanjiang, 524048, Guangdong, China
| | - Yuning Huang
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, , Lingnan Normal University, Zhanjiang, 524048, Guangdong, China
| | - Rufei Yang
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, , Lingnan Normal University, Zhanjiang, 524048, Guangdong, China
| | - Xin Guo
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, , Lingnan Normal University, Zhanjiang, 524048, Guangdong, China
| | - Yongmei Jia
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, , Lingnan Normal University, Zhanjiang, 524048, Guangdong, China.
| | - Peilian Liu
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, , Lingnan Normal University, Zhanjiang, 524048, Guangdong, China.
| | - Zhiguo Li
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, , Lingnan Normal University, Zhanjiang, 524048, Guangdong, China
| | - Wenjuan Cui
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, , Lingnan Normal University, Zhanjiang, 524048, Guangdong, China
| |
Collapse
|
5
|
Andavar A, Bhagavathi VR, Cousin J, Parekh N, Razavi ZS, Tan B. Current Research in Drug-Free Cancer Therapies. Bioengineering (Basel) 2025; 12:341. [PMID: 40281701 PMCID: PMC12024433 DOI: 10.3390/bioengineering12040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 04/29/2025] Open
Abstract
Cancer treatment has historically depended on conventional methods like chemotherapy, radiation, and surgery; however, these strategies frequently present considerable limitations, including toxicity, resistance, and negative impacts on healthy tissues. In addressing these challenges, drug-free cancer therapies have developed as viable alternatives, utilizing advanced physical and biological methods to specifically target tumor cells while reducing damage to normal tissues. This review examines several drug-free cancer treatment strategies, such as high-intensity focused energy beams, nanosecond pulsed electric fields, and photothermal therapy as well as the use of inorganic nanoparticles to promote selective apoptosis. We also investigate the significance of targeting the tumor microenvironment, precision medicine, and immunotherapy in the progression of personalized cancer therapies. Although these approaches demonstrate significant promise, challenges including scalability, safety, and regulatory obstacles must be resolved for clinical application. This paper presents an overview of current research in drug-free cancer therapies, emphasizing recent advancements, underlying scientific principles, and the steps required for clinical implementation.
Collapse
Affiliation(s)
- Akshaya Andavar
- Karpagam Academy of Higher Education, Coimbatore 641021, India;
| | | | - Justine Cousin
- École Publique d’Ingénieurs de la Santé et du Numérique (EPISEN), Université Paris-Est Créteil (UPEC), 94000 Créteil, France;
| | - Nirvi Parekh
- Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India;
| | - Zahra Sadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran 1416634793, Iran;
| | - Bo Tan
- Institute of Biomedical Engineering Science and Technology (iBEST), Faculty of Engineering and Architectural Science, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
6
|
Shah DD, Chorawala MR, Raghani NR, Patel R, Fareed M, Kashid VA, Prajapati BG. Tumor microenvironment: recent advances in understanding and its role in modulating cancer therapies. Med Oncol 2025; 42:117. [PMID: 40102282 DOI: 10.1007/s12032-025-02641-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
Tumor microenvironment (TME) denotes the non-cancerous cells and components presented in the tumor, including molecules produced and released by them. Interactions between cancer cells, immune cells, stromal cells, and the extracellular matrix within the TME create a dynamic ecosystem that can either promote or hinder tumor growth and spread. The TME plays a pivotal role in either promoting or inhibiting tumor growth and dissemination, making it a critical factor to consider in the development of effective cancer therapies. Understanding the intricate interplay within the TME is crucial for devising effective cancer therapies. Combination therapies involving inhibitors of immune checkpoint blockade (ICB), and/or chemotherapy now offer new approaches for cancer therapy. However, it remains uncertain how to best utilize these strategies in the context of the complex tumor microenvironment. Oncogene-driven changes in tumor cell metabolism can impact the TME to limit immune responses and present barriers to cancer therapy. Cellular and acellular components in tumor microenvironment can reprogram tumor initiation, growth, invasion, metastasis, and response to therapies. Components in the TME can reprogram tumor behavior and influence responses to treatments, facilitating immune evasion, nutrient deprivation, and therapeutic resistance. Moreover, the TME can influence angiogenesis, promoting the formation of blood vessels that sustain tumor growth. Notably, the TME facilitates immune evasion, establishes a nutrient-deprived milieu, and induces therapeutic resistance, hindering treatment efficacy. A paradigm shift from a cancer-centric model to a TME-centric one has revolutionized cancer research and treatment. However, effectively targeting specific cells or pathways within the TME remains a challenge, as the complexity of the TME poses hurdles in designing precise and effective therapies. This review highlights challenges in targeting the tumor microenvironment to achieve therapeutic efficacy; explore new approaches and technologies to better decipher the tumor microenvironment; and discuss strategies to intervene in the tumor microenvironment and maximize therapeutic benefits.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| | - Neha R Raghani
- Department of Pharmacology and Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar, Gujarat, 382355, India
| | - Rajanikant Patel
- Department of Product Development, Granules Pharmaceuticals Inc., 3701 Concorde Parkway, Chantilly, VA, 20151, USA
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, 13713, Riyadh, Saudi Arabia
| | - Vivekanand A Kashid
- MABD Institute of Pharmaceutical Education and Research, Babhulgaon, Yeola, Nashik, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
7
|
Wang X, Wang J, Zhao X, Zhang J, Zhang Y. The adipokines in oral cancer pathogenesis and its potential as a new therapeutic approach. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03939-w. [PMID: 40056203 DOI: 10.1007/s00210-025-03939-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/16/2025] [Indexed: 03/10/2025]
Abstract
The involvement of adipose tissue in the development of cancer is currently the subject of an increasing number of research due to the growing relevance of lipid metabolism in tumor growth. Obesity influences the tumor immune microenvironment (TME) in oral cancer. Visceral white adipose tissue (WAT) consists of adipocytes, connective tissue, immune cells, and stromovascular cells. The metabolic processes of immune cells within the adipose tissue of individuals with obesity predominantly depend on oxidative phosphorylation (intrinsically) and are characterized by elevated levels of M2 macrophages, Treg cells, Th2 cells, and eosinophils from an extrinsic perspective. The adipokines secreted by adipocytes facilitate communication with adjacent tissues to regulate glucose and lipid metabolism. Obesity influences cancer progression through the dysregulation of adipocytokines, characterized by an augmented synthesis of the oncogenic adipokine leptin, coupled with a reduced secretion of adiponectin. Under standard physiological settings, these adipokines fulfill essential roles in sustaining homeostasis. This review analyzed the influence of adipocytes on oral cancer by detailing the mediators released by adipocytes. Comprehending the molecular foundations of the protumor roles of adipokines in oral cancers might provide novel treatment targets.
Collapse
Affiliation(s)
- Xue Wang
- Department of Stomatology, Jilin Province FAW General Hospital, Jilin, 130000, China
| | - Jiapeng Wang
- Department of Orthopedics, Jilin Province FAW General Hospital, Jilin, 130000, China.
| | - Xuemei Zhao
- Department of Stomatology, Jilin Province FAW General Hospital, Jilin, 130000, China
| | - Jiayin Zhang
- Department of Stomatology, Jilin Province FAW General Hospital, Jilin, 130000, China
| | - Yan Zhang
- Medical Department, Changchun Sci-Tech University, Changchun, 130000, China
| |
Collapse
|
8
|
Zhang C, Hu S, Yin C, Wang G, Liu P. STAT3 orchestrates immune dynamics in hepatocellular carcinoma: A pivotal nexus in tumor progression. Crit Rev Oncol Hematol 2025; 207:104620. [PMID: 39818308 DOI: 10.1016/j.critrevonc.2025.104620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025] Open
Abstract
Hepatocellular carcinoma (HCC) presents a formidable challenge in oncology, attributed to its association with chronic liver diseases and global prevalence. The immune microenvironment profoundly influences HCC progression, balancing immune suppression and antitumor responses. The Signal Transducer and Activator of Transcription 3 (STAT3) is central to this equilibrium, orchestrating immune dynamics and intertwining tumor progression with immune evasion mechanisms. Dysregulated STAT3 signaling, activated by various stimuli, including cytokines and growth factors, promotes an immunosuppressive milieu within HCC tumors, fostering tumor survival and proliferation while hindering immune surveillance. Non-coding RNAs and other molecules regulate this process, modulating STAT3 activity and influencing immune cell function. Moreover, therapeutic interventions targeting the STAT3 pathway, alongside advancements in radiotherapy, cancer vaccines, and diabetes-related drugs, offer promising strategies in HCC management. Integrating natural compounds with immunotherapy emerges as a novel approach, leveraging their ability to enhance antitumor immunity and counter immune evasion strategies. Understanding the multifaceted role of STAT3 and its interactions within the immune landscape of HCC is paramount for devising effective therapeutic interventions and improving patient outcomes.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Songbai Hu
- Department of Cancer Center, Yuexi County Hospital, Anqing, Anhui Province 246600, China
| | - Chuanzheng Yin
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guoliang Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Pian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Hubei, China.
| |
Collapse
|
9
|
Zhou S, Qin Y, Lei A, Li Y, Yang P, Liu H, Sun Y, Zhang J, Deng C, Chen Y. Neoadjuvant and Adjuvant Immunotherapy in the Treatment of Oral Squamous Cell Carcinoma. J Biochem Mol Toxicol 2025; 39:e70199. [PMID: 40034087 DOI: 10.1002/jbt.70199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/22/2025] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
Oral squamous cell carcinoma (OSCC) is experiencing a progressive increase in global incidence. Regrettably, this entity is typically discovered at an advanced stage in the majority of patients, which indicates increased therapeutic challenges and a poorer prognosis. Programmed cell death protein 1 (PD-1) appears to have a significant role in immunotherapy and monoclonal antibodies targeting this molecule have been utilized as a therapeutic intervention. A decade of research indicates that neoadjuvant immunotherapy has garnered greater interest than adjuvant immunotherapy in OSCC. This may be due to neoadjuvant immunotherapy serving as a preventive and adjunctive treatment. Enhanced outcomes may be achieved by optimizing the cancer microenvironment before surgery. Of note, neoadjuvant immunotherapy has been introduced preoperatively for untreated OSCC.
Collapse
Affiliation(s)
- Songlin Zhou
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
- College of Oral Medicine, Wannan Medical College, Wuhu, China
| | - Yutao Qin
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
- College of Oral Medicine, Wannan Medical College, Wuhu, China
| | - Anwen Lei
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
- Xuancheng City People's Hospital, Xuancheng, China
| | - Yue Li
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
- College of Oral Medicine, Wannan Medical College, Wuhu, China
| | - Peiru Yang
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
- College of Oral Medicine, Wannan Medical College, Wuhu, China
| | - Hai Liu
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
- College of Oral Medicine, Wannan Medical College, Wuhu, China
| | - Yi Sun
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
- College of Oral Medicine, Wannan Medical College, Wuhu, China
| | - Jue Zhang
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
- College of Oral Medicine, Wannan Medical College, Wuhu, China
| | - Chao Deng
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
- College of Oral Medicine, Wannan Medical College, Wuhu, China
| | - Yu Chen
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
- College of Oral Medicine, Wannan Medical College, Wuhu, China
| |
Collapse
|
10
|
Yan C, Du Y, Cui L, Bao H, Li H. CircPTK2 as a Valuable Biomarker and Treatment Target in Cancer. J Biochem Mol Toxicol 2025; 39:e70161. [PMID: 39887513 DOI: 10.1002/jbt.70161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/06/2025] [Accepted: 01/19/2025] [Indexed: 02/01/2025]
Abstract
Circular RNA (CircRNA)s, a newly discovered type of noncoding RNAs, have been found to play a role in controlling the development and aggressiveness of tumors. Abnormal control of circRNA has been observed in various types of human cancers, including bladder cancer, hepatocellular carcinoma (HCC), breast cancer, and gastric cancer (GC). CircRNAs possess binding sites for microRNAs (miRNAs) and function as miRNA sponges in posttranscriptional regulation. This mechanism has been documented to influence the course of cancer. Significantly, among these putative circRNAs, circular RNA protein tyrosine kinase 2 (circPTK2) exhibited increased expression and displayed a substantial association with adverse clinical characteristics and a negative prognosis. The production of these transcripts occurs via a back-splicing mechanism. The enclosed conformation of circRNAs shields them from destruction and enhances their potential as biomarkers. Gaining insight into the molecular mechanisms involved in these processes would aid in the development of treatment approaches and the discovery of new tumor markers. This article provides a comprehensive assessment of the latest research on the biosynthesis and features of circRNAs. It examines the role of circPTK2 in the diagnosis, treatment, and prognosis evaluation of cancer.
Collapse
Affiliation(s)
- Chengqiu Yan
- Department of Anorectal Center, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yu Du
- Department of Anorectal Center, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Lihong Cui
- Department of Anorectal Center, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Han Bao
- Department of Anorectal, Changchun Hospital of Traditional Chinese Medicine, Changchun, China
| | - Hui Li
- Department of Anorectal Center, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
11
|
Poustforoosh A. Optimizing kinase and PARP inhibitor combinations through machine learning and in silico approaches for targeted brain cancer therapy. Mol Divers 2025:10.1007/s11030-025-11114-9. [PMID: 39841319 DOI: 10.1007/s11030-025-11114-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025]
Abstract
The drug combination is an attractive approach for cancer treatment. PARP and kinase inhibitors have recently been explored against cancer cells, but their combination has not been investigated comprehensively. In this study, we used various drug combination databases to build ML models for drug combinations against brain cancer cells. Some decision tree-based models were used for this purpose. The results were further evaluated using molecular docking and molecular dynamics (MD) simulation. The possibility of the hit drug combinations for crossing the Blood-brain barrier (BBB) was also examined. Based on the obtained results, the combination of niraparib, as the PARP inhibitor, and lapatinib, as the kinase inhibitor, exhibited more considerable outcomes with a remarkable model performance (accuracy of 0.915) and prediction confidence of 0.92. The protein tweety homolog 3 and BTB/POZ domain-containing protein 2 are the main targets of niraparib and lapatinib with - 10.2 and - 8.5 scores, respectively. Due to the outcomes, this drug combination can use the CAT1 transporter on the BBB surface and effectively cross the BBB. Based on the obtained results, niraparib-lapatinib can be a promising drug combination candidate for brain cancer treatment. This combination is worth to be examined by experimental investigation in vitro and in vivo.
Collapse
Affiliation(s)
- Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
12
|
Khan Y, Hussain MS, Ramalingam PS, Fatima R, Maqbool M, Ashique S, Khan NU, Bisht AS, Gupta G. Exploring extracellular RNA as drivers of chemotherapy resistance in cancer. Mol Biol Rep 2025; 52:142. [PMID: 39836259 DOI: 10.1007/s11033-025-10263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Chemotherapy resistance (CR) represents one of the most important barriers to effective oncological therapy and often leads to ineffective intervention and unfavorable clinical prognosis. Emerging studies have emphasized the vital significance of extracellular RNA (exRNA) in influencing CR. This thorough assessment intends to explore the multifaceted contributions of exRNA, such as exosomal RNA, microRNAs, long non-coding RNAs, and circular RNAs, to CR in cancer. We discuss the mechanisms by which exRNA facilitates drug resistance, such as modulating gene expression, influencing the tumor microenvironment, and facilitating intercellular communication. Furthermore, we examine the potential of exRNA as prognostic factor for determining oncology treatment efficacy and their emerging role as therapeutic targets. Diagnostic and prognostic applications of exRNA biomarkers are considered, alongside current methodologies for their detection and quantification. Additionally, we review recent advances in exRNA-targeted therapies, highlighting ongoing clinical trials and therapeutic strategies aimed at overcoming chemoresistance. Despite the promise of exRNA research, several challenges remain, including technical limitations and the biological complexity of exRNA networks. This review underscores the importance of continued investigation into exRNA biology and its therapeutic potential, which in the future may provide new avenues for cancer treatment and tailored medical strategies. By elucidating the role of exRNA in CR, this article aims to provide a comprehensive resource for researchers and clinicians seeking to improve the effectiveness of carcinoma management approaches.
Collapse
Affiliation(s)
- Yumna Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, PO Box 25130, Pakistan
| | - Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India.
| | - Prasanna Srinivasan Ramalingam
- Protein Engineering Lab, School of Biosciences and Technology, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India
| | - Rabab Fatima
- Department of Chemistry, Energy Acres, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Mudasir Maqbool
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Jammu, Srinagar, Kashmir, 190006, India
| | - Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, PO Box 25130, Pakistan
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand, 248001, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| |
Collapse
|
13
|
Tantray J, Patel A, Parveen H, Prajapati B, Prajapati J. Nanotechnology-based biomedical devices in the cancer diagnostics and therapy. Med Oncol 2025; 42:50. [PMID: 39828813 DOI: 10.1007/s12032-025-02602-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Nanotechnology has significantly transformed the field of cancer diagnostics and therapeutics by introducing advanced biomedical devices. These nanotechnology-based devices exhibit remarkable capabilities in detecting and treating various cancers, addressing the limitations of traditional approaches, such as limited specificity and sensitivity. This review aims to explore the advancements in nanotechnology-driven biomedical devices, emphasizing their role in the diagnosis and treatment of cancer. Through a comprehensive analysis, we evaluate various nanotechnology-based devices across different cancer types, detailing their diagnostic and therapeutic effectiveness. The review also discusses FDA-approved nanotechnology products, patents, and regulatory trends, highlighting the innovation and clinical impact in oncology. Nanotechnology-based devices, including nanobots, smart pills, and multifunctional nanoparticles, enable precise targeting and treatment, reducing adverse effects on healthy tissues. Devices such as DNA-based nanorobots, quantum dots, and biodegradable stents offer noninvasive diagnostic and therapeutic options, showing high efficacy in preclinical and clinical settings. FDA-approved products underscore the acceptance of these technologies. Nanotechnology-based biomedical devices offer a promising future for oncology, with the potential to revolutionize cancer care through early detection, targeted treatment, and minimal side effects. Continued research and technological improvements are essential to fully realize their potential in personalized cancer therapy.
Collapse
Affiliation(s)
- Junaid Tantray
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Akhilesh Patel
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Hiba Parveen
- Faculty of Pharmacy, Veer Madho Singh Bhandari Uttrakhand Technical University, Dehradun, India
| | - Bhupendra Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Jigna Prajapati
- Faculty of Computer Application, Ganpat University, Mehsana, Gujarat, 384012, India.
| |
Collapse
|
14
|
Liu YT, Lin CW, Sun CC, Shao SC, Chen NN. Bilateral keratitis associated with afatinib therapy. Taiwan J Ophthalmol 2024; 14:121-124. [PMID: 38654991 PMCID: PMC11034688 DOI: 10.4103/tjo.tjo-d-24-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/21/2024] [Indexed: 04/26/2024] Open
Abstract
This case discussed a significant ocular side effect, bilateral keratitis, which could be induced by afatinib, an irreversible epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI). We explored the disease progression of a 52-year-old, stage IV nasopharyngeal carcinoma male patient, who was under afatinib treatment and had experienced progressive bilateral eye dryness and tenderness on increasing afatinib from 40 mg every other day to 40 mg daily. Clinical examination noted bilateral visual acuity reduction, diffuse superficial punctate keratopathy in the right eye, and a central epithelial defect in the left eye. Seidel test results were negative for both eyes, with no corneal infiltration, lagophthalmos, anterior chamber cell precipitation, or retinal lesion. Symptoms subsequently resolved after reducing the frequency of afatinib used, along with intensive ocular hydration. In summary, this case highlighted afatinib's potential link to bilateral keratitis, and early afatinib dose adjustment with supportive medication could significantly reverse the condition.
Collapse
Affiliation(s)
- Ya-Tung Liu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chen-Wei Lin
- Department of Ophthalmology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chi-Chin Sun
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Chieh Shao
- Department of Pharmacy, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Nan-Ni Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| |
Collapse
|