1
|
Mongiat M, Pascal G, Poletto E, Williams DM, Iozzo RV. Proteoglycans of basement membranes: Crucial controllers of angiogenesis, neurogenesis, and autophagy. PROTEOGLYCAN RESEARCH 2024; 2:e22. [PMID: 39184370 PMCID: PMC11340296 DOI: 10.1002/pgr2.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/02/2024] [Indexed: 08/27/2024]
Abstract
Anti-angiogenic therapy is an established method for the treatment of several cancers and vascular-related diseases. Most of the agents employed target the vascular endothelial growth factor A, the major cytokine stimulating angiogenesis. However, the efficacy of these treatments is limited by the onset of drug resistance. Therefore, it is of fundamental importance to better understand the mechanisms that regulate angiogenesis and the microenvironmental cues that play significant role and influence patient treatment and outcome. In this context, here we review the importance of the three basement membrane heparan sulfate proteoglycans (HSPGs), namely perlecan, agrin and collagen XVIII. These HSPGs are abundantly expressed in the vasculature and, due to their complex molecular architecture, they interact with multiple endothelial cell receptors, deeply affecting their function. Under normal conditions, these proteoglycans exert pro-angiogenic functions. However, in pathological conditions such as cancer and inflammation, extracellular matrix remodeling leads to the degradation of these large precursor molecules and the liberation of bioactive processed fragments displaying potent angiostatic activity. These unexpected functions have been demonstrated for the C-terminal fragments of perlecan and collagen XVIII, endorepellin and endostatin. These bioactive fragments can also induce autophagy in vascular endothelial cells which contributes to angiostasis. Overall, basement membrane proteoglycans deeply affect angiogenesis counterbalancing pro-angiogenic signals during tumor progression, and represent possible means to develop new prognostic biomarkers and novel therapeutic approaches for the treatment of solid tumors.
Collapse
Affiliation(s)
- Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Gabriel Pascal
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Davion M. Williams
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
2
|
Li W, Wang Z, Su Q, Chen J, Wu Q, Sun X, Zhu S, Li X, Wei H, Zeng J, Guo L, Zhang C, He J. A Reconfigurable DNA Framework Nanotube-Assisted Antiangiogenic Therapy. JACS AU 2024; 4:1345-1355. [PMID: 38665667 PMCID: PMC11040663 DOI: 10.1021/jacsau.3c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
A major limitation of tumor antiangiogenic therapy is the pronounced off-target effect, which can lead to unavoidable injury in multiple organs. Ensuring sufficient delivery and controlled release of these antiangiogenic agents at tumor sites is crucial for realizing their clinical application. Here, we develop a smart DNA-based nanodrug, termed Endo-rDFN, by precisely assembling the antiangiogenic agent, endostar (Endo), into a reconfigurable DNA framework nanotube (rDFN) that could recognize tumor-overexpressed nucleolin to achieve the targeted delivery and controllable release of Endo. Endo-rDFN can not only effectively enhance the tumor-targeting capability of Endo and maintain its efficient accumulation in tumor tissues but also achieve on-demand release of Endo at tumor sites via the specific DNA aptamer for tumor-overexpressed nucleolin, named AS1411. We also found that Endo-rDFN exhibited significant inhibition of angiogenesis and tumor growth, while also providing effective protection against multiorgan injury (heart, liver, spleen, kidney, lung, etc.) to some extent, without compromising the function of these organs. Our study demonstrates that rDFN represents a promising vector for reducing antiangiogenic therapy-induced multiorgan injury, highlighting its potential for promoting the clinical application of antiangiogenic agents.
Collapse
Affiliation(s)
- Wei Li
- Department
of Oncology, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
- Department
of Endocrinology and Metabolism, 481 Center for Diabetes and Metabolism
Research, West China 482 Hospital, Sichuan
University, Chengdu 610041, China
| | - Zhongliang Wang
- Department
of Pathology, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
| | - Qing Su
- Department
of Pharmacy, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
| | - Jie Chen
- Department
of Radiation Oncology, Cancer Hospital of
Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Qian Wu
- Department
of Pathology, Beijing Sixth Hospital, Beijing
University, Beijing 100080, China
| | - Xue Sun
- Department
of Pathology, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
| | - Shuhan Zhu
- Department
of Pathology, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
| | - Xiaodie Li
- Department
of Oncology, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
| | - Hao Wei
- Department
of Urology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, China
| | - Jialin Zeng
- Department
of Oncology, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
| | - Linlang Guo
- Department
of Pathology, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
| | - Chao Zhang
- Department
of Oncology, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
| | - Jian He
- Department
of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
3
|
Anakha J, Dobariya P, Sharma SS, Pande AH. Recombinant human endostatin as a potential anti-angiogenic agent: therapeutic perspective and current status. Med Oncol 2023; 41:24. [PMID: 38123873 DOI: 10.1007/s12032-023-02245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023]
Abstract
Angiogenesis is the physiological process that results in the formation of new blood vessels develop from pre-existing vasculature and plays a significant role in several physiological and pathological processes. Inhibiting angiogenesis, a crucial mechanism in the growth and metastasis of cancer, has been proposed as a potential anticancer therapy. Different studies showed the beneficial effects of angiogenesis inhibitors either in patients suffering from different cancers, alone or in combination with conventional therapies. Even though there are currently a number of efficient anti-angiogenic drugs, including monoclonal antibodies and kinase inhibitors, the associated toxicity profile and their affordability constraints are prompting researchers to search for a safe and affordable angiostatic agent for cancer treatment. Endostatin is one of the endogenous anti-angiogenic candidates that have been extensively pursued for the treatment of cancer, but even over three decades after its discovery, we have not made much advancement in employing it as an anticancer therapeutic despite of its remarkable anti-angiogenic effect with low toxicity profile. A recombinant human endostatin (rh-Es) variant for non-small cell lung cancer was approved by China in 2006 and has since been used effectively. Several other successful clinical trials related to endostatin for various malignancies are either ongoing or have already been completed with promising results. Thus, in this review, we have provided an overview of existing anti-angiogenic drugs developed for cancer therapy, with a summary of tumour angiogenesis in the context of Endostatin, and clinical status of rh-Es in cancer treatment. Furthermore, we briefly discuss the various strategies to improve endostatin features (poor pharmacokinetic properties) for developing rh-Es as a safe and effective agent for cancer treatment.
Collapse
Affiliation(s)
- J Anakha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Prakashkumar Dobariya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India.
| |
Collapse
|