1
|
Abdelbagi O, Taha M, Al-Kushi AG, Alobaidy MA, Baokbah TAS, Sembawa HA, Azher ZA, Obaid R, Babateen O, Bokhari BT, Qusty NF, Malak HA. Ameliorative Effect of N-Acetylcysteine Against 5-Fluorouracil-Induced Cardiotoxicity via Targeting TLR4/NF-κB and Nrf2/HO-1 Pathways. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:335. [PMID: 40005451 PMCID: PMC11857307 DOI: 10.3390/medicina61020335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Background and Objectives: 5-Fluorouracil (5-FU) is a widely prescribed and effective chemotherapeutic drug, but its cardiotoxic side effects pose a significant challenge to its use. Identifying a protective agent that does not affect its anticancer efficacy is essential. Our study aimed to investigate the cardioprotective effect of N-acetyl cysteine (NAC) against 5-FU-induced cardiac injury and to elucidate the underlying mechanisms. Materials and Methods: This study included four experimental groups, each with eight rats (n = 8): Group I (control group), Group II (NAC group), Group III (5-FU group), and Group IV (combined group 5-FU+NAC). Cardiac enzymes, oxidative stress, inflammatory, and apoptotic markers were investigated, and cardiac sections from the different groups were histologically examined. Results: Co-treatment of 5-FU with NAC resulted in significantly lower levels of cardiac enzymes (alanine transaminase (ALT) by 62.1%, aspartate transaminase (AST) by 73.6%, lactate dehydrogenase (LDH) by 55.8%, and creatine kinase (CK) by 57.3%) compared to the 5-FU group, along with marked improvements in heart tissue histology. Additionally, NAC enhanced the activity of cardiac antioxidant enzymes (superoxide dismutase (SOD) by 295.6%, catalase (CAT) by 181%, and glutathione peroxidase (GPx) by 320.9%) while decreasing malondialdehyde (MDA) by 51.1%, a marker of membranous lipid peroxidation. This might be due to significant upregulation of the nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway at the gene and protein levels. The combined treatment significantly decreased the gene expression of the toll-like receptor 4 (TLR4)/nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-κB) pathway. Furthermore, it downregulated the protein levels of inflammatory markers, including tumor necrosis factor-alpha (TNF-α) by 29.9%, interleukin-1 beta (IL-1β) by 21.9%, and interleukin-6 (IL-6) by 49.3%. Moreover, it upregulated the antiapoptotic marker B-cell lymphoma 2 (Bcl-2) protein levels by 269% and decreased apoptotic indicators Bcl-2-associated protein x (Bax) by 57.9% and caspase-3 by 30.6% compared to the 5-FU group. Conclusions: This study confirmed that NAC prevented the cardiotoxic effect of 5-FU through its antioxidant, anti-inflammatory, and antiapoptotic properties, suggesting its potential application as an adjuvant therapy in chemotherapy to alleviate 5-FU-induced cardiotoxicity.
Collapse
Affiliation(s)
- Omer Abdelbagi
- Department of Pathology, Qunfudah Faculty of Medicine, Umm Al-Qura University, Al-Qunfudhah 28814, Saudi Arabia;
| | - Medhat Taha
- Department of Anatomy, Al-Qunfudah Medical College, Umm Al-Qura University, Al-Qunfudhah 28814, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Abdullah G. Al-Kushi
- Department of Anatomy, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia; (A.G.A.-K.); (M.A.A.)
| | - Mohammad Ahmad Alobaidy
- Department of Anatomy, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia; (A.G.A.-K.); (M.A.A.)
| | - Tourki A. S. Baokbah
- Department of Medical Emergency Services, College of Health Sciences-AlQunfudah, Umm Al-Qura University, Al-Qunfudhah 28814, Saudi Arabia;
| | - Hatem A. Sembawa
- Department of Surgery, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
| | - Zohor Asaad Azher
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
| | - Rami Obaid
- Department of Medical Genetics, Faculty of Medicine at Al-Qunfudah, Umm Al-Qura University, Al-Qunfudhah 28814, Saudi Arabia;
| | - Omar Babateen
- Department of Physiology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
| | - Bayan T. Bokhari
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia; (B.T.B.); (N.F.Q.)
| | - Naeem F. Qusty
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia; (B.T.B.); (N.F.Q.)
| | - Hesham A. Malak
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
- Research Laboratories Centre, Faculty of Applied Science, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| |
Collapse
|
2
|
Sarawi WS, Attia HA, Alzoubi A, Alanazi N, Mohammad R, Ali RA. Cardamom extract alleviates tamoxifen-induced liver damage by suppressing inflammation and pyroptosis pathway. Sci Rep 2025; 15:4744. [PMID: 39922887 PMCID: PMC11807216 DOI: 10.1038/s41598-025-89091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025] Open
Abstract
Tamoxifen (TAM) is extensively used to manage estrogen receptor-positive breast cancer. Despite its effectiveness, its administration can negatively impact various organs, including the liver. This research focused on the effects of TAM on the pyroptotic pathway in the liver and evaluated the potential of cardamom extract (CRDE) to lessen hepatic damage of TAM in female rats. Rats received 45 mg/kg of TAM injections for 10 days, while the groups treated with CRDE received 12 ml/kg of CRDE for 20 days, commencing 10 days before TAM administration. TAM exposure resulted in apparent degenerations in hepatic tissue with inflammatory cell infiltration and loss of architectures. Serum levels of liver enzymes including alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase were elevated, along with hepatic oxidative stress, as shown by increased lipid peroxidation with lower levels of reduced glutathione. TAM caused inflammation in the liver tissue as indicated by higher levels of tumor necrosis factor-α and interleukin-6 as well as increased expression of CD68; a phagocytic Kupffer's cells marker. Additionally, the protein expression analysis revealed a high expression of pyroptotic markers including NLRP3-inflammasome, caspase-1, and gasdermin D. Conversely, CRDE treatment effectively neutralized the biochemical, histological, and protein expression alterations induced by TAM. In conclusion, CRDE demonstrated the potential to protect the liver from TAM-induced damage by regulating mechanisms involving oxidative damage, inflammation, and pyroptosis.
Collapse
Affiliation(s)
- Wedad S Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia.
| | - Hala A Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Afraa Alzoubi
- Department of Bioengineering, Imperial College London, London, UK
| | - Nour Alanazi
- College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Raeesa Mohammad
- Department of Histology, College of Medicine, King Saud University, P.O. Box 2925, Riyadh, 11461, Saudi Arabia
| | - Rehab A Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
3
|
Mahran YF, Badr AM, Al-Kharashi LA, Alajami HN, Aldamry NT, Bayoumy NM, Elmongy EI, Soliman S. Thymol Protects against 5-Fluorouracil-Induced Hepatotoxicity via the Regulation of the Akt/GSK-3β Pathway in In Vivo and In Silico Experimental Models. Pharmaceuticals (Basel) 2024; 17:1094. [PMID: 39204199 PMCID: PMC11357534 DOI: 10.3390/ph17081094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND 5-fluorouracil (5-FU) is a widely used, highly effective chemotherapeutic agent. However, its therapeutic efficacy is often limited by associated adverse effects, with hepatotoxicity being frequently reported with 5-FU therapy. Thymol is a monoterpene found in thyme (Thymus vulgaris L., Lamiaceae) and is known for its antioxidant, anti-apoptotic, and anticancer activities. This study aimed to explore the hepatoprotective activity of thymol against 5-FU-induced liver injury. METHODS Rats received two intraperitoneal doses of 5-FU (150 mg/kg) either alone or in combination with thymol at doses of 60 mg/kg or 120 mg/kg. Liver enzymes, oxidative stress, and apoptotic markers, in addition to histopathological changes, were assessed. RESULTS 5-FU induced marked liver injuries as evidenced by elevated liver enzymes and histopathological changes, in addition to abnormalities of oxidative and apoptotic markers. The administration of thymol ameliorated the 5-FU-induced oxidative damage through increasing hepatic antioxidants and lowering lipid peroxidation. Apoptotic response markers such as Bax, Bcl-2, Bax/Bcl-2 ratio, and PARP were also improved. Furthermore, Western blotting analysis showed that thymol modulated the 5-FU-induced changes in the expression of Akt/GSK-3β and p44/42 MAPK (ERK1/2) signaling pathways. CONCLUSIONS Our research is the first to shed light on thymol's potential protective effect against 5-FU- induced hepatotoxicity by inhibiting oxidative and apoptotic pathways and modulating the Akt/ GSK-3β as well as p44/42 MAPK (ERK1/2) signaling pathways.
Collapse
Affiliation(s)
- Yasmen F. Mahran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Amira M. Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia; (L.A.A.-K.); (N.T.A.)
| | - Layla A. Al-Kharashi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia; (L.A.A.-K.); (N.T.A.)
| | - Hanaa N. Alajami
- College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Nouf T. Aldamry
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia; (L.A.A.-K.); (N.T.A.)
| | - Nervana Moustafa Bayoumy
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Elshaymaa I. Elmongy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo 11795, Egypt;
| | - Sahar Soliman
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA;
| |
Collapse
|
4
|
Badr AM, Alotaibi HN, El-Orabi N. Dibenzazepine, a γ-Secretase Enzyme Inhibitor, Protects Against Doxorubicin-Induced Cardiotoxicity by Suppressing NF-κB, iNOS, and Hes1/Hey1 Expression. Inflammation 2024:10.1007/s10753-024-02046-x. [PMID: 39078585 DOI: 10.1007/s10753-024-02046-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 07/31/2024]
Abstract
Doxorubicin (DOX) is an effective chemotherapeutic drug; however, its cardiotoxicity and resistance compromise its therapeutic index. The Notch pathway was reported to contribute to DOX cancer resistance. The role of Notch pathway in DOX cardiotoxicity has not been identified yet. Notch receptors are characterized by their extracellular (NECD) and intracellular (NICD) domains (NICD). The γ-secretase enzyme helps in the release of NICD. Dibenzazepine (DBZ) is a γ-secretase inhibitor. The present study investigated the effect of Notch pathway inhibition on DOX cardiotoxicity. Twenty-four male Wistar rats were divided into four groups: control group, DOX group, acute cardiotoxicity was induced by a single dose of DOX (20 mg/kg) i.p., DOX (20 mg/kg) plus DBZ group, and DBZ group. The third and fourth groups received i.p. injection of DBZ daily for 14 days at 2 mg/kg dose. DOX cardiotoxicity increased the level of serum creatine kinase-MB and cardiac troponin I, and it was confirmed by the histopathological examination. Moreover, the antioxidants glutathione peroxidase and superoxide dismutase levels were markedly decreased, and the inflammatory markers, inducible nitric oxide synthase, nuclear factor-ķB, and tumor necrosis factor-α were markedly increased. Furthermore, DOX increased BAX protein and downregulated BCL-2. In addition, DOX upregulated Notch pathway-related parameters: Hes1 and Hey1 mRNA levels, and increased Hes1 protein levels. DBZ ameliorated DOX-induced cardiotoxicity, evidenced by reducing the cardiac injury biomarkers, improving cardiac histopathological changes, correcting antioxidant levels, and reducing inflammatory and apoptotic proteins. Our study indicates the protective effect of Notch inhibitor against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Amira M Badr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Saud University, Riyadh, 11211, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Hind N Alotaibi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Saud University, Riyadh, 11211, Saudi Arabia
| | - Naglaa El-Orabi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
5
|
Yin CY, Lian YP, Xu JD, Liu CM, Cai JL, Zhu L, Wang DJ, Luo LB, Yan XJ. Study on network pharmacology of Ginkgo biloba extract against ischaemic stroke mechanism and establishment of UPLC-MS/MS methods for simultaneous determination of 19 main active components. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:254-270. [PMID: 37758241 DOI: 10.1002/pca.3286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
INTRODUCTION Ginkgo biloba extract (GBE) is an effective substance from traditional Chinese medicine (TCM) G. biloba for treating ischaemic stroke (IS). However, its active ingredients and mechanism of action remain unclear. OBJECTIVES This study aimed to reveal the potential active component group and possible anti-IS mechanism of GBE. MATERIALS AND METHODS The network pharmacology method was used to reveal the possible anti-IS mechanism of these active ingredients in GBE. An ultra-high-performance liquid chromatography triple quadrupole electrospray tandem mass spectrometry (UPLC-MS/MS) method was established for the simultaneous detection of the active ingredients of GBE. RESULTS The active components of GBE anti-IS were screened by literature integration. Network pharmacology results showed that the anti-IS effect of GBE is achieved through key active components such as protocatechuic acid, bilobalide, ginkgolide A, and so on. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the possible anti-IS mechanism of GBE is regulating the PI3K-Akt signalling pathway and other signal pathways closely related to inflammatory response and apoptosis regulation combined with AKT1, MAPK, TNF, ALB, CASP3, and other protein targets. Nineteen main constituents in seven batches of GBE were successfully analysed using the established UPLC-MS/MS method, and the results showed that the content of protocatechuic acid, gallic acid, ginkgolide A, and so forth was relatively high, which was consistent with network pharmacology results, indicating that these ingredients may be the key active anti-IS ingredients of GBE. CONCLUSION This study revealed the key active components and the anti-IS mechanism of GBE. It also provided a simple and sensitive method for the quality control of related preparations.
Collapse
Affiliation(s)
- Chun-Yan Yin
- Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical School, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Yuan-Pei Lian
- Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical School, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Jian-Da Xu
- Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical School, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Chan-Ming Liu
- Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical School, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Jia-Li Cai
- Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical School, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Li Zhu
- Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical School, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Di-Jun Wang
- Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical School, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Li-Bo Luo
- Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical School, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Xiao-Jing Yan
- Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical School, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| |
Collapse
|
6
|
Saad HM, Elekhnawy E, Shaldam MA, Alqahtani MJ, Altwaijry N, Attallah NGM, Hussein IA, Ibrahim HA, Negm WA, Salem EA. Rosuvastatin and diosmetin inhibited the HSP70/TLR4 /NF-κB p65/NLRP3 signaling pathways and switched macrophage to M2 phenotype in a rat model of acute kidney injury induced by cisplatin. Biomed Pharmacother 2024; 171:116151. [PMID: 38262148 DOI: 10.1016/j.biopha.2024.116151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/25/2024] Open
Abstract
Numerous efforts to manage acute kidney injury (AKI) were unsuccessful because its pathophysiology is still poorly understood. Thus, our research hotspot was to explore the possible renoprotective effects of rosuvastatin (Ros) and diosmetin (D) on macrophage polarization and the role of HSP70/TLR4/MyD88/NF-κB p65/NLRP3/STAT3 signaling in cis-induced AKI and study the activity of D against uropathogenic bacteria. Fifty-four albino male rats were randomized into 9 groups equally: Control, Ros, D20, D40, untreated Cis, and Cis groups cotreated with Ros, D20, D40 and Ros+D40 for 10 days. Our results indicated that Ros and D, in a dose-dependent manner, markedly restored body weight, systolic blood pressure, and renal histological architecture besides significantly upregulated SOD levels, expression of anti-inflammatory CD163 macrophages, arginase1levels, IL-10 levels,STAT3 and PCNA immunoreactivity. Also, they significantly downregulated renal index, serum urea, serum creatinine, serum cystatin c, inflammatory biomarkers (C reactive protein, IL1β & TNF-α), MDA levels, HSP70/TLR4/MyD88/NF-κB p65/NLRP3 expressions, proinflammatory CD68 macrophages and caspase-3 immunoreactivity, resulting in a reversal of cis-induced renal damage. These findings were further confirmed by molecular docking that showed the binding affinity of Ros and D towards TLR4 and NLRP3. Furthermore, D had antibacterial action with a minimum inhibitory concentration ranging from 128 to 256 µg/mL and caused a delay in the growth of the tested isolates, and negatively affected the membrane integrity. In conclusion, Ros and D had antioxidant, anti-inflammatory and antiapoptotic properties and switched macrophage from proinflammatory CD68 to anti-inflammatory CD163. Additionally, the targeting of HSP70/TLR4/MyD88/NF-κB p65/NLRP3/STAT3 signals are effective therapeutic strategy in AKI.
Collapse
Affiliation(s)
- Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, Egypt.
| | - Engy Elekhnawy
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Moneerah J Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
| | | | - Ismail A Hussein
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hanaa A Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tanta, Egypt
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Esraa A Salem
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebeen ElKom 32511, Egypt
| |
Collapse
|
7
|
Zavala-Valencia AC, Velasco-Hidalgo L, Martínez-Avalos A, Castillejos-López M, Torres-Espíndola LM. Effect of N-Acetylcysteine on Cisplatin Toxicity: A Review of the Literature. Biologics 2024; 18:7-19. [PMID: 38250216 PMCID: PMC10799624 DOI: 10.2147/btt.s438150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024]
Abstract
N-acetylcysteine (NAC) is a membrane-permeable cysteine precursor capable of enhancing the intracellular cysteine pool, enhancing cellular glutathione (GSH) synthesis, and thus potentiating the endogenous antioxidant mechanism. Late administration of NAC after cisplatin has been shown in different in vivo studies to reduce the side effects caused by various toxicities at different levels without affecting the antitumor efficacy of platinum, improving total and enzymatic antioxidant capacity and decreasing oxidative stress markers. These characteristics provide NAC with a rationale as a potentially effective chemo protectant in cisplatin-based therapeutic cycles. NAC represents a potential candidate as a chemoprotective agent to decrease toxicities secondary to cisplatin treatment. It suggests that it could be used in clinical trials, whereby the effective dose, timing, and route should be adjusted to optimize chemoprotection. This review provides an overview of the effect of NAC on cisplatin toxicity, a drug widely used in the clinic in adults and children.
Collapse
Affiliation(s)
- Angeles Citlali Zavala-Valencia
- Laboratory of Pharmacology, National Institute of Pediatrics, Mexico City, Mexico
- Iztacala Faculty of Higher Studies, Tlalnepantla, México
| | | | | | - Manuel Castillejos-López
- Hospital Epidemiology and Infectology Unit, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | | |
Collapse
|
8
|
Subramaniyan V, Lubau NSA, Mukerjee N, Kumarasamy V. Alcohol-induced liver injury in signalling pathways and curcumin's therapeutic potential. Toxicol Rep 2023; 11:355-367. [PMID: 37868808 PMCID: PMC10585641 DOI: 10.1016/j.toxrep.2023.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
Confronting the profound public health concern of alcohol-induced liver damage calls for inventive therapeutic measures. The social, economic, and clinical ramifications are extensive and demand a comprehensive understanding. This thorough examination uncovers the complex relationship between alcohol intake and liver damage, with a special emphasis on the pivotal roles of the Toll-like receptor 4 (TLR4)/NF-κB p65 and CYP2E1/ROS/Nrf2 signalling networks. Different alcohol consumption patterns, determined by a myriad of factors, have significant implications for liver health, leading to a spectrum of adverse effects. The TLR4/NF-κB p65 pathway, a principal regulator of inflammation and immune responses, significantly contributes to various disease states when its balance is disrupted. Notably, the TLR4/MD-2-TNF-α pathway has been linked to non-alcohol related liver disease, while NF-κB activation is associated with alcohol-induced liver disease (ALD). The p65 subunit of NF-κB, primarily responsible for the release of inflammatory cytokines, hastens the progression of ALD. Breakthrough insights suggest that curcumin, a robust antioxidant and anti-inflammatory compound sourced from turmeric, effectively disrupts the TLR4/NF-κB p65 pathway. This heralds a new approach to managing alcohol-induced liver damage. Initial clinical trials support curcumin's therapeutic potential, highlighting its ability to substantially reduce liver enzyme levels. The narrative surrounding alcohol-related liver injury is gradually becoming more intricate, intertwining complex signalling networks such as TLR4/NF-κB p65 and CYP2E1/ROS/Nrf2. The protective role of curcumin against alcohol-related liver damage marks the dawn of new treatment possibilities. However, the full realisation of this promising therapeutic potential necessitates rigorous future research to definitively understand these complex mechanisms and establish curcumin's effectiveness and safety in managing alcohol-related liver disorders.
Collapse
Affiliation(s)
- Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India
| | - Natasha Sura Anak Lubau
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary Collage, Kolkata, West Bengal 700118, India
- Department of Health Sciences, Novel Global Community and Educational Foundation, Australia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Zhang Z, Liang B, Jike W, Li R, Su X, Yu J, Liu T. The Protective Effect of Marsdenia tenacissima against Cisplatin-Induced Nephrotoxicity Mediated by Inhibiting Oxidative Stress, Inflammation, and Apoptosis. Molecules 2023; 28:7582. [PMID: 38005304 PMCID: PMC10674371 DOI: 10.3390/molecules28227582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Cisplatin (Cis) is considered to be one of the most effective drugs for killing cancer cells and remains a first-line chemotherapeutic agent. However, Cis's multiple toxicities (especially nephrotoxicity) have limited its clinical use. Marsdenia tenacissima (Roxb.) Wight et Arn. (MT), a traditional Chinese medicine (TCM) employed extensively in China, not only enhances the antitumor effect in combination with Cis, but is also used for its detoxifying effect, as it reduces the toxic side effects of chemotherapy drugs. The aim of this study was to explore the therapeutic effect of MT on Cis-induced nephrotoxicity, along with its underlying mechanisms. In this study, liquid-mass spectrometry was performed to identify the complex composition of the extracts of MT. In addition, we measured the renal function, antioxidant enzymes, and inflammatory cytokines in mice with Cis-induced nephrotoxicity and conducted renal histology evaluations to assess renal injury. The expressions of the proteins related to antioxidant, anti-inflammatory, and apoptotic markers in renal tissues was detected by Western blotting (WB). MT treatment improved the renal function, decreased the mRNA expression of the inflammatory factors, and increased the antioxidant enzyme activity in mice. A better renal histology was observed after MT treatment. Further, MT inhibited the expression of the phospho-NFκB p65 protein/NFκB p65 protein (p-p65)/p65, phospho-inhibitor of nuclear factor kappa B kinase beta subunit/inhibitor of nuclear factor kappa B kinase beta subunit (p-IKKβ/IKKβ), Bcl-2-associated X (Bax), and Cleaved Caspase 3/Caspase 3 proteins, while the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), Recombinant NADH Dehydrogenase, Quinone 1 (NQO1), and B-cell lymphoma-2 (Bcl-2) was increased. The present study showed that MT ameliorated renal injury, which mainly occurs through the regulation of the Nrf2 pathway, the NF-κB pathway, and the suppression of renal tissue apoptosis. It also suggests that MT can be used as an adjuvant to mitigate the nephrotoxicity of Cis chemotherapy.
Collapse
Affiliation(s)
- Zhiguang Zhang
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| | - Boya Liang
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| | - Wugemo Jike
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| | - Runtian Li
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| | - Xinxin Su
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| | - Jie Yu
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| | - Tongxiang Liu
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| |
Collapse
|
10
|
El-Gohary RM, Ghalwash AA, Awad MM, El-Shaer RAA, Ibrahim S, Eltantawy AF, Elmansy A, Okasha AH. Novel insights into the augmented effect of curcumin and liraglutide in ameliorating cisplatin-induced nephrotoxicity in rats: Effects on oxidative stress, inflammation, apoptosis and pyroptosis via GSK-3β. Arch Biochem Biophys 2023; 749:109801. [PMID: 37884117 DOI: 10.1016/j.abb.2023.109801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Cisplatin dose-dependent nephrotoxicity is a major issue limiting its proper use in cancer treatment. Inflammation, redox imbalance, and dysregulated cell death are the most plausible underlying pathomechanics. Curcumin and the glucagon-like peptide-1 receptor agonist, liraglutide, have been investigated in various experimental models for their antioxidant, anti-inflammatory, and cell death modulatory effects. Hence, this work was designed to investigate curcumin and liraglutide nephroprotective effects and how they behave together against cisplatin-induced acute kidney injury (AKI) in an experimental Wistar rat model. The study comprised 61 rats divided randomly into 6 unequal groups: control I and II, cisplatin-induced nephrotoxicity, curcumin-treated, liraglutide-treated, and co-treated groups. Renal index, serum nephrotoxicity markers (Cr, BUN, NGAL), renal glycogen synthase kinase-3 β (GSK-3β), oxidant/antioxidant parameters (MDA, MPO, GSH, NQO1, HO-1), and inflammatory biomolecules (TNF-α, IL-1β) were assayed. Moreover, renal cleaved-caspase3 and the pyroptotic biomolecules (nod-like receptor family pyrin domain containing 3, gasdermin D N-terminal fragment) were immunoassayed. Furthermore, relative renal expression of both nuclear factor erythroid 2-related factor 2 (Nr-F2) and caspase1 was evaluated by qRT-PCR. Histopathological examination of renal tissue was carried out along with detection of Bcl-2 and Bax immunoreactivity. Cisplatin induced acute renal damage, augmented inflammation, dysregulated redox balance and induced apoptosis and pyroptosis. On the other hand, curcumin and liraglutide corrected the dysregulated mechanisms and normalized results to a great extent. Mutual use of curcumin and liraglutide exerted the greatest effect in the co-treatment group. Nr-F2/HO-1 axis and GSK-3β play a master role in their nephroprotective effect. In conclusion, curcumin and liraglutide have an ameliorative effect against cisplatin-induced nephrotoxicity and can be used alone or better in combination owing to their augmented effect launching promising avenues for cancer patients under cisplatin treatment, retarding AKI and enabling them to gain the best protocol effectiveness.
Collapse
Affiliation(s)
- Rehab M El-Gohary
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | - Asmaa A Ghalwash
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | - Marwa Mahmoud Awad
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | | | - Sarah Ibrahim
- Human Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | - Asmaa Fawzy Eltantawy
- Medical Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | - Alshaimma Elmansy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Tanta University, 31527, Tanta, Egypt.
| | - Asmaa H Okasha
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
11
|
Abdel-Wahab BA, El-Shoura EAM, Shafiuddin Habeeb M, Zafaar D. Febuxostat alleviates Arsenic Trioxide-Induced renal injury in Rats: Insights on the crosstalk between NLRP3/TLR4, Sirt-1/NF-κB/TGF-β signaling Pathways, and miR-23b-3p, miR-181a-5b expression. Biochem Pharmacol 2023; 216:115794. [PMID: 37689273 DOI: 10.1016/j.bcp.2023.115794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Febuxostat (FBX), a xanthine oxidase inhibitor, is known to improve renal function and can show promise as a therapeutic agent for preventing drug-induced nephrotoxicity. This study aimed to explore the protective effect of FBX in preventing renal damage caused by arsenic trioxide (ATO) toxicity and uncover the underlying mechanisms. The researchers examined how FBX (10 mg/kg, orally) affected ATO-induced kidney injury (5 mg/kg, intraperitoneally) in rats. Kidney function and toxicity parameters in serum and oxidative stress biomarkers and inflammatory cytokine levels in renal tissue were measured. H&E staining was used to detect histopathological changes in the kidney. Network the molecular mechanisms of FBX in improving kidney injury were investigated using Western blotting and PCR techniques. The findings showed that FBX improved kidney function by inhibiting the pathological changes seen in H&E staining, decreasing levels of probed kidney function and toxicity measures in serum and tissue, and exhibiting antioxidant and anti-inflammatory effects. FBX decreased MDA, MPO, TNF-α, IL-1β, IL-6, COX-II, and NADPH oxidase levels, while increased GSH, GPx, SOD, and IL-10 levels. FBX also reduced the expression of NLRP3, ASC, TLR4, and micro-RNA 181a-5b while increased the expression of IKBα, Sirt-1, and micro-RNA 23b-3p, according to Western blotting and PCR results. In conclusion, FBX can play a vital role in reducing kidney injury in cases of ATO-induced nephrotoxicity, though more clinical research needs to be conducted.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran P.O. Box 1988, Saudi Arabia.
| | - Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | | | - Dalia Zafaar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University of Technology, and Information, Cairo, Egypt.
| |
Collapse
|
12
|
Morgan AM, Ogaly HA, Kamel S, Rashad MM, Hassanen EI, Ibrahim MA, Galal MK, Yassin AM, Dulmani SAA, Al-Zahrani FA, Hussien AM. Protective effects of N-acetyl-l-cysteine against penconazole-triggered hepatorenal toxicity in adult rats. J Vet Res 2023; 67:459-469. [PMID: 37786839 PMCID: PMC10541664 DOI: 10.2478/jvetres-2023-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 06/26/2023] [Indexed: 10/04/2023] Open
Abstract
Introduction Penconazole (PEN) is a widely applied triazole fungicide. This study sought to define the efficacy of N-acetyl-l-cysteine (NAC) in mitigating PEN-triggered hepatorenal toxicity in rats. Material and Methods Twenty-eight adult male albino Wistar rats were assigned to four groups: a normal control (NC), a PEN group, a NAC group and a PEN+NAC group. Administration of PEN (50 mg/kg body weight (b.w.) every 2 days) and NAC (150 mg/kg b.w., daily) took place via oral gavage for 10 days. Results Effective amelioration by NAC of PEN-induced liver and kidney dysfunction was indicated by a significant reduction in the circulating liver and kidney markers (aspartate aminotransferase, alanine aminotransferase, urea and creatinine). Attenuation of PEN-induced oxidative stress and lipid peroxidation in liver and kidney tissues was evident in a significant reduction in malondialdehyde and enhanced total antioxidant capacity. Moreover, NAC significantly reduced the histopathological alterations and the expression of tumour necrosis factor α in liver and kidney tissue. Furthermore, NAC maintained the messenger RNA levels of nuclear factor erythroid 2-related factor 2 (Nrf2), haem oxygenase 1, and Kelch-like erythroid cell-derived protein 1 and prevented nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) protein upregulation caused by PEN. Conclusion N-acetyl-1-cysteine protected against PEN-induced hepatorenal oxidative damage and inflammatory response via activation of Nrf2 and inhibition of NF-κB pathways.
Collapse
Affiliation(s)
| | - Hanan A. Ogaly
- Chemistry Department, Faculty of Science, King Khalid University, Abha 62421, Abha High City, Saudi Arabia
| | - Shaimaa Kamel
- Biochemistry and Molecular Biology Department, 12211Giza, Egypt
| | - Maha M. Rashad
- Biochemistry and Molecular Biology Department, 12211Giza, Egypt
| | - Eman I. Hassanen
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, 12211Giza, Egypt
| | | | - Mona K. Galal
- Biochemistry and Molecular Biology Department, 12211Giza, Egypt
| | - Aya M. Yassin
- Biochemistry and Molecular Biology Department, 12211Giza, Egypt
| | - Sharah A. Al Dulmani
- Chemistry Department, Faculty of Science, King Khalid University, Abha 62421, Abha High City, Saudi Arabia
| | - Fatimah A.M. Al-Zahrani
- Chemistry Department, Faculty of Science, King Khalid University, Abha 62421, Abha High City, Saudi Arabia
| | | |
Collapse
|