1
|
Dahran N, Othman MS, Mumtaz F, Aleid GM, Ghoniem ME, Samak MA, Elabbasy MT, Saleh AA, Obeidat ST, Habotta OA, Moneim AEA. Caffeine-boosted silver nanoparticles target breast cancer cells by triggering oxidative stress, inflammation, and apoptotic pathways. J Pharm Sci 2025; 114:103802. [PMID: 40280486 DOI: 10.1016/j.xphs.2025.103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Breast cancer (BC) constitutes a major global health concern and is the second foremost cause of cancer-related mortality among women worldwide. This research investigated the anticancer effectiveness of caffeine-conjugated silver nanoparticles (Caf-AgNPs) against MDA-MB-231 breast cancer cells, utilizing fluorouracil (5-FU) as a reference antitumor drug. The study illustrated that the strategic conjugation of caffeine with AgNPs substantially improved the therapeutic efficacy against breast cancer cell lines and simultaneously attenuated cytotoxicity in normal mouse liver (NBL) cells. Caf-AgNPs significantly increased ROS, malondialdehyde, COX-2, IL-1β, and TNF-α level in BC cells, which was accompanied by a decrease in glutathione levels. The increased levels of cytosolic cytochrome c, caspase-3, and Bax proteins, as well as a significant decrease in Bcl-2 expression and Bcl-2/Bax ratio, were indicative of the significant pro-apoptotic effects of Caf-AgNPs in MDA-MB-231 cells. Cancer cells subjected to Caf-AgNPs demonstrated elevated lactate dehydrogenase (LDH) membrane leakage, signifying cellular membrane disruption. Cell cycle analysis revealed a substantial proportion of early and late stage apoptosis in cancer cells exposed to Caf-AgNPs, accompanied by a notable downregulation of cyclin D1 and cyclin-dependent kinase 2 (CDK2) mRNA expression. Caf-AgNPs utilize several mechanisms for cellular destruction, including cell cycle arrest, oxidative stress induction, modulation of the inflammatory response, and mitochondrial apoptosis. Caf-AgNPs offer a promising and complex strategy for breast cancer intervention.
Collapse
Affiliation(s)
- Naief Dahran
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, 21959, Saudi Arabia.
| | - Mohamed S Othman
- Biochemistry Department, College of Medicine, University of Ha'il, Hail, 2440, Saudi Arabia; Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza, Egypt.
| | - Farah Mumtaz
- Department of Biology, Collage of Science, University of Babylon; Hillah 51002, Babylon, Iraq.
| | - Ghada M Aleid
- Biochemistry Department, College of Medicine, University of Ha'il, Hail, 2440, Saudi Arabia.
| | - Mohamed E Ghoniem
- Department of Internal Medicine, College of Medicine, University of Ha'il, Ha'il 2240, Saudi Arabia; Department of Internal Medicine, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Mai A Samak
- College of Medicine, University of Ha'il, Hail, 2240, Saudi Arabia; Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | | | - Ayman A Saleh
- Department of Pathology, College of Medicine, University of Ha'il, Hail 2240, Saudi Arabia
| | - Sofian T Obeidat
- Basic Sciences Department, Deanship of Preparatory Year University of Ha'il, Hail, Saudi Arabia.
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Ain Helwan, 11795, Cairo, Egypt; Al-Ayen Scientific Research Center, Al-Ayen Iraqi University, AUIQ, An Nasiriyah, P.O. Box: 64004, Thi Qar, Iraq.
| |
Collapse
|
2
|
Song X, Singh M, Lee KE, Vinayagam R, Kang SG. Caffeine: A Multifunctional Efficacious Molecule with Diverse Health Implications and Emerging Delivery Systems. Int J Mol Sci 2024; 25:12003. [PMID: 39596082 PMCID: PMC11593559 DOI: 10.3390/ijms252212003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Natural caffeine is found in many plants, including coffee beans, cacao beans, and tea leaves. Around the world, many beverages, including coffee, tea, energy drinks, and some soft drinks, have this natural caffeine compound. This paper reviewed the results of meta-studies on caffeine's effects on chronic diseases. Of importance, many meta-studies have shown that regularly drinking caffeine or caffeinated coffee significantly reduces the risk of developing Alzheimer's disease, epilepsy, and Parkinson's disease. Based on the health supplements of caffeine, this review summarizes various aspects related to the application of caffeine, including its pharmacokinetics, and various functional health benefits of caffeine, such as its effects on the central nervous system. The importance of caffeine and its use in alleviating or treating cancer, diabetes, eye diseases, autoimmune diseases, and cardiovascular diseases is also discussed. Overall, consuming caffeine daily in drinks containing antioxidant and neuroprotective properties, such as coffee, prevents progressive neurodegenerative diseases, such as Alzheimer's and Parkinson's. Furthermore, to effectively deliver caffeine to the body, recently developed nanoformulations using caffeine, for instance, nanoparticles, liposomes, etc., are summarized along with regulatory and safety considerations for caffeine. The U.S. Department of Agriculture (USDA) and the Food and Drug Administration (FDA) recommended that healthy adults consume up to 400 mg of caffeine per day or 5~6 mg/kg body weight. Since a cup of coffee contains, on average, 100 to 150 mg of coffee, 1 to 3 cups of coffee may help prevent chronic diseases. Furthermore, this review summarizes various interesting and important areas of research on caffeine and its applications related to human health.
Collapse
Affiliation(s)
- Xinjie Song
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Mahendra Singh
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Kyung Eun Lee
- Sunforce Inc., 208-31, Gumchang-ro, Yeungcheon-si 31882, Republic of Korea;
| | - Ramachandran Vinayagam
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
3
|
Praveen M, Ullah I, Buendia R, Khan IA, Sayed MG, Kabir R, Bhat MA, Yaseen M. Exploring Potentilla nepalensis Phytoconstituents: Integrated Strategies of Network Pharmacology, Molecular Docking, Dynamic Simulations, and MMGBSA Analysis for Cancer Therapeutic Targets Discovery. Pharmaceuticals (Basel) 2024; 17:134. [PMID: 38276007 PMCID: PMC10819299 DOI: 10.3390/ph17010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Potentilla nepalensis belongs to the Rosaceae family and has numerous therapeutic applications as potent plant-based medicine. Forty phytoconstituents (PCs) from the root and stem through n-hexane (NR and NS) and methanolic (MR and MS) extracts were identified in earlier studies. However, the PCs affecting human genes and their roles in the body have not previously been disclosed. In this study, we employed network pharmacology, molecular docking, molecular dynamics simulations (MDSs), and MMGBSA methodologies. The SMILES format of PCs from the PubChem was used as input to DIGEP-Pred, with 764 identified as the inducing genes. Their enrichment studies have shown inducing genes' gene ontology descriptions, involved pathways, associated diseases, and drugs. PPI networks constructed in String DB and network topological analyzing parameters performed in Cytoscape v3.10 revealed three therapeutic targets: TP53 from MS-, NR-, and NS-induced genes; HSPCB and Nf-kB1 from MR-induced genes. From 40 PCs, two PCs, 1b (MR) and 2a (MS), showed better binding scores (kcal/mol) with p53 protein of -8.6 and -8.0, and three PCs, 3a, (NR) 4a, and 4c (NS), with HSP protein of -9.6, -8.7, and -8.2. MDS and MMGBSA revealed these complexes are stable without higher deviations with better free energy values. Therapeutic targets identified in this study have a prominent role in numerous cancers. Thus, further investigations such as in vivo and in vitro studies should be carried out to find the molecular functions and interlaying mechanism of the identified therapeutic targets on numerous cancer cell lines in considering the PCs of P. nepalensis.
Collapse
Affiliation(s)
- Mallari Praveen
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak 484886, India;
| | - Ihsan Ullah
- Institute of Chemical Sciences, University of Swat, Main Campus, Charbagh 19130, Pakistan; (I.U.); (M.G.S.); (R.K.)
| | - Ricardo Buendia
- Department of Chemical Biological Sciences, Universidad de las Américas Puebla, Puebla 72810, Mexico;
| | - Imran Ahmad Khan
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan;
| | - Mian Gul Sayed
- Institute of Chemical Sciences, University of Swat, Main Campus, Charbagh 19130, Pakistan; (I.U.); (M.G.S.); (R.K.)
| | - Rahmul Kabir
- Institute of Chemical Sciences, University of Swat, Main Campus, Charbagh 19130, Pakistan; (I.U.); (M.G.S.); (R.K.)
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Swat, Main Campus, Charbagh 19130, Pakistan; (I.U.); (M.G.S.); (R.K.)
| |
Collapse
|