1
|
Varnamkhasti BS, Jafari S, Taghavi F, Alaei L, Izadi Z, Lotfabadi A, Dehghanian M, Jaymand M, Derakhshankhah H, Saboury AA. Cell-Penetrating Peptides: As a Promising Theranostics Strategy to Circumvent the Blood-Brain Barrier for CNS Diseases. Curr Drug Deliv 2020; 17:375-386. [DOI: 10.2174/1567201817666200415111755] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/09/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
The passage of therapeutic molecules across the Blood-Brain Barrier (BBB) is a profound challenge for the management of the Central Nervous System (CNS)-related diseases. The ineffectual nature of traditional treatments for CNS disorders led to the abundant endeavor of researchers for the design the effective approaches in order to bypass BBB during recent decades. Cell-Penetrating Peptides (CPPs) were found to be one of the promising strategies to manage CNS disorders. CPPs are short peptide sequences with translocation capacity across the biomembrane. With special regard to their two key advantages like superior permeability as well as low cytotoxicity, these peptide sequences represent an appropriate solution to promote therapeutic/theranostic delivery into the CNS. This scenario highlights CPPs with specific emphasis on their applicability as a novel theranostic delivery system into the brain.
Collapse
Affiliation(s)
- Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Samira Jafari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Fereshteh Taghavi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Loghman Alaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Alireza Lotfabadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Mojtaba Dehghanian
- Department of Biotechnology, Shahr-e Kord Branch, Islamic Azad University, Shahr-e Kord, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Marques AC, Costa PJ, Velho S, Amaral MH. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J Control Release 2020; 320:180-200. [PMID: 31978444 DOI: 10.1016/j.jconrel.2020.01.035] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 01/07/2023]
Abstract
Standard cancer therapies sometimes fail to deliver chemotherapeutic drugs to tumor cells in a safe and effective manner. Nanotechnology takes the lead in providing new therapeutic options for cancer due to major potential for selective targeting and controlled drug release. Antibodies and antibody fragments are attracting much attention as a source of targeting ligands to bind specific receptors that are overexpressed on cancer cells. Therefore, researchers are devoting time and effort to develop targeting strategies based on nanoparticles functionalized with antibodies, which hold great promise to enhance therapeutic efficacy and circumvent severe side effects. Several methods have been described to immobilize antibodies on the surface of nanoparticles. However, selecting the most appropriate for each application is challenging but also imperative to preserve antigen binding ability and yield stable antibody-conjugated nanoparticles. From this perspective, we aim to provide considerable knowledge on the most widely used methods of functionalization that can be helpful for decision-making and design of conjugation protocols as well. This review summarizes adsorption, covalent conjugation (carbodiimide, maleimide and "click" chemistries) and biotin-avidin interaction, while discussing the advantages, limitations and relevant therapeutic approaches currently under investigation.
Collapse
Affiliation(s)
- A C Marques
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - P J Costa
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - S Velho
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - M H Amaral
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Parfenov VA, Koudan EV, Bulanova EA, Karalkin PA, DAS Pereira F, Norkin NE, Knyazeva AD, Gryadunova AA, Petrov OF, Vasiliev MM, Myasnikov MI, Chernikov VP, Kasyanov VA, Marchenkov AY, Brakke K, Khesuani YD, Demirci U, Mironov VA. Scaffold-free, label-free and nozzle-free biofabrication technology using magnetic levitational assembly. Biofabrication 2018; 10:034104. [PMID: 29848793 DOI: 10.1088/1758-5090/aac900] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tissue spheroids have been proposed as building blocks in 3D biofabrication. Conventional magnetic force-driven 2D patterning of tissue spheroids requires prior cell labeling by magnetic nanoparticles, meanwhile a label-free approach for 3D magnetic levitational assembly has been introduced. Here we present first time report on rapid assembly of 3D tissue construct using scaffold-free, nozzle-free and label-free magnetic levitation of tissue spheroids. Chondrospheres of standard size, shape and capable to fusion have been biofabricated from primary sheep chondrocytes using non-adhesive technology. Label-free magnetic levitation was performed using a prototype device equipped with permanent magnets in presence of gadolinium (Gd3+) in culture media, which enables magnetic levitation. Mathematical modeling and computer simulations were used for prediction of magnetic field and kinetics of tissue spheroids assembly into 3D tissue constructs. First, we used polystyrene beads to simulate the assembly of tissue spheroids and to determine the optimal settings for magnetic levitation in presence of Gd3+. Second, we proved the ability of chondrospheres to assemble rapidly into 3D tissue construct in the permanent magnetic field in the presence of Gd3+. Thus, scaffold- and label-free magnetic levitation of tissue spheroids is a promising approach for rapid 3D biofabrication and attractive alternative to label-based magnetic force-driven tissue engineering.
Collapse
Affiliation(s)
- Vladislav A Parfenov
- Laboratory for Biotechnological Research '3D Bioprinting Solutions', Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Self-assembled amphiphilic core-shell nanocarriers in line with the modern strategies for brain delivery. J Control Release 2017. [PMID: 28648865 DOI: 10.1016/j.jconrel.2017.06.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Disorders of the central nervous system (CNS) represent increasing social and economic problems all over the world which makes the effective transport of drugs to the brain a crucial need. In the last decade, many strategies were introduced to deliver drugs to the brain trying to overcome the challenge of the blood brain barrier (BBB) using both invasive and non-invasive methods. Non-invasive strategy represented in the application of nanocarriers became very common. One of the most hopeful nanoscopic carriers for brain delivery is core-shell nanocarriers or polymeric micelles (PMs). They are more advantageous than other nanocarriers. They offer small size, ease of preparation, ease of sterilization and the possibility of surface modification with various ligands. Hence, the aim of this review is to discuss modern strategies for brain delivery, micelles as a successful delivery system for the brain and how micelles could be modified to act as "magic bullets" for brain delivery.
Collapse
|
5
|
Zhang TT, Li W, Meng G, Wang P, Liao W. Strategies for transporting nanoparticles across the blood-brain barrier. Biomater Sci 2017; 4:219-29. [PMID: 26646694 DOI: 10.1039/c5bm00383k] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The existence of blood-brain barrier (BBB) hampers the effective treatment of central nervous system (CNS) diseases. Almost all macromolecular drugs and more than 98% of small molecule drugs cannot pass the BBB. Therefore, the BBB remains a big challenge for delivery of therapeutics to the central nervous system. With the structural and mechanistic elucidation of the BBB under both physiological and pathological conditions, it is now possible to design delivery systems that could cross the BBB effectively. Because of their advantageous properties, nanoparticles have been widely deployed for brain-targeted delivery. This review paper presents the current understanding of the BBB under physiological and pathological conditions, and summarizes strategies and systems for BBB crossing with a focus on nanoparticle-based drug delivery systems. In summary, with wider applications and broader prospection the treatment of brain targeted therapy, nano-medicines have proved to be more potent, more specific and less toxic than traditional drug therapy.
Collapse
Affiliation(s)
- Tian-Tian Zhang
- Department of Food Science and Technology, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong, China.
| | - Wen Li
- IHRC, Inc., 2 Ravinia Dr NE, Atlanta, GA 30346, USA
| | - Guanmin Meng
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou 310012, China
| | - Pei Wang
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, USA
| | - Wenzhen Liao
- Department of Food Science and Technology, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Ferchichi S, Trabelsi H, Azzouz I, Hanini A, Rejeb A, Tebourbi O, Sakly M, Abdelmelek H. Evaluation of oxidative response and tissular damage in rat lungs exposed to silica-coated gold nanoparticles under static magnetic fields. Int J Nanomedicine 2016; 11:2711-9. [PMID: 27354800 PMCID: PMC4907707 DOI: 10.2147/ijn.s103140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The purpose of our study was the evaluation of toxicological effects of silica-coated gold nanoparticles (GNPs) and static magnetic fields (SMFs; 128 mT) exposure in rat lungs. Animals received a single injection of GNPs (1,100 µg/kg, 100 nm, intraperitoneally) and were exposed to SMFs, over 14 days (1 h/day). Results showed that GNPs treatment induced a hyperplasia of bronchus-associated lymphoid tissue. Fluorescence microscopy images showed that red fluorescence signal was detected in rat lungs after 2 weeks from the single injection of GNPs. Oxidative response study showed that GNPs exposure increased malondialdehyde level and decreased CuZn-superoxide dismutase, catalase, and glutathione peroxidase activities in rat lungs. Furthermore, the histopathological study showed that combined effects of GNPs and SMFs led to more tissular damages in rat lungs in comparison with GNPs-treated rats. Interestingly, intensity of red fluorescence signal was enhanced after exposure to SMFs indicating a higher accumulation of GNPs in rat lungs under magnetic environment. Moreover, rats coexposed to GNPs and SMFs showed an increased malondialdehyde level, a fall of CuZn-superoxide dismutase, catalase, and glutathione peroxidase activities in comparison with GNPs-treated group. Hence, SMFs exposure increased the accumulation of GNPs in rat lungs and led to more toxic effects of these nanocomplexes.
Collapse
Affiliation(s)
- Soumaya Ferchichi
- Laboratory of Integrative Physiology, Faculty Of Sciences of Bizerte, Carthage University, Carthage, Tunisia
| | - Hamdi Trabelsi
- Laboratory of Integrative Physiology, Faculty Of Sciences of Bizerte, Carthage University, Carthage, Tunisia
| | - Inès Azzouz
- Laboratory of Integrative Physiology, Faculty Of Sciences of Bizerte, Carthage University, Carthage, Tunisia
| | - Amel Hanini
- Laboratory of Vascular Pathology, Carthage University, Carthage, Tunisia
| | - Ahmed Rejeb
- Laboratory of Pathological Anatomy, National School of Veterinary Medicine of Sidi Thabet, Manouba Univeristy, Manouba, Tunisia
| | - Olfa Tebourbi
- Laboratory of Integrative Physiology, Faculty Of Sciences of Bizerte, Carthage University, Carthage, Tunisia
| | - Mohsen Sakly
- Laboratory of Integrative Physiology, Faculty Of Sciences of Bizerte, Carthage University, Carthage, Tunisia
| | - Hafedh Abdelmelek
- Laboratory of Integrative Physiology, Faculty Of Sciences of Bizerte, Carthage University, Carthage, Tunisia
| |
Collapse
|
7
|
Rocca A, Marino A, Rocca V, Moscato S, de Vito G, Piazza V, Mazzolai B, Mattoli V, Ngo-Anh TJ, Ciofani G. Barium titanate nanoparticles and hypergravity stimulation improve differentiation of mesenchymal stem cells into osteoblasts. Int J Nanomedicine 2015; 10:433-45. [PMID: 25609955 PMCID: PMC4294648 DOI: 10.2147/ijn.s76329] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Enhancement of the osteogenic potential of mesenchymal stem cells (MSCs) is highly desirable in the field of bone regeneration. This paper proposes a new approach for the improvement of osteogenesis combining hypergravity with osteoinductive nanoparticles (NPs). Materials and methods In this study, we aimed to investigate the combined effects of hypergravity and barium titanate NPs (BTNPs) on the osteogenic differentiation of rat MSCs, and the hypergravity effects on NP internalization. To obtain the hypergravity condition, we used a large-diameter centrifuge in the presence of a BTNP-doped culture medium. We analyzed cell morphology and NP internalization with immunofluorescent staining and coherent anti-Stokes Raman scattering, respectively. Moreover, cell differentiation was evaluated both at the gene level with quantitative real-time reverse-transcription polymerase chain reaction and at the protein level with Western blotting. Results Following a 20 g treatment, we found alterations in cytoskeleton conformation, cellular shape and morphology, as well as a significant increment of expression of osteoblastic markers both at the gene and protein levels, jointly pointing to a substantial increment of NP uptake. Taken together, our findings suggest a synergistic effect of hypergravity and BTNPs in the enhancement of the osteogenic differentiation of MSCs. Conclusion The obtained results could become useful in the design of new approaches in bone-tissue engineering, as well as for in vitro drug-delivery strategies where an increment of nanocarrier internalization could result in a higher drug uptake by cell and/or tissue constructs.
Collapse
Affiliation(s)
- Antonella Rocca
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @ SSSA, Pontedera, Italy ; Scuola Superiore Sant'Anna, The BioRobotics Institute, Pontedera, Italy
| | - Attilio Marino
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @ SSSA, Pontedera, Italy ; Scuola Superiore Sant'Anna, The BioRobotics Institute, Pontedera, Italy
| | - Veronica Rocca
- Università di Pisa, Dipartimento di Ingegneria dell'Informazione, Pisa, Italy, Noordwijk, the Netherlands
| | - Stefania Moscato
- Università di Pisa, Dipartimento di Medicina Clinica e Sperimentale, Pisa, Italy
| | - Giuseppe de Vito
- Istituto Italiano di Tecnologia, Center for Nanotechnology Innovation @NEST, Pisa, Italy ; Scuola Normale Superiore, NEST, Pisa, Italy
| | - Vincenzo Piazza
- Istituto Italiano di Tecnologia, Center for Nanotechnology Innovation @NEST, Pisa, Italy
| | - Barbara Mazzolai
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @ SSSA, Pontedera, Italy
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @ SSSA, Pontedera, Italy
| | - Thu Jennifer Ngo-Anh
- Directorate of Human Spaceflight and Operations, European Space Agency, Noordwijk, the Netherlands
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @ SSSA, Pontedera, Italy
| |
Collapse
|
8
|
Mahmoudi M, Meng J, Xue X, Liang XJ, Rahman M, Pfeiffer C, Hartmann R, Gil PR, Pelaz B, Parak WJ, del Pino P, Carregal-Romero S, Kanaras AG, Tamil Selvan S. Interaction of stable colloidal nanoparticles with cellular membranes. Biotechnol Adv 2014; 32:679-92. [DOI: 10.1016/j.biotechadv.2013.11.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/04/2013] [Accepted: 11/12/2013] [Indexed: 11/25/2022]
|
9
|
Gulin-Sarfraz T, Zhang J, Desai D, Teuho J, Sarfraz J, Jiang H, Zhang C, Sahlgren C, Lindén M, Gu H, Rosenholm JM. Combination of magnetic field and surface functionalization for reaching synergistic effects in cellular labeling by magnetic core–shell nanospheres. Biomater Sci 2014; 2:1750-1760. [DOI: 10.1039/c4bm00221k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The joint effect of surface functionalization and an external magnetic field on cellular labeling was studied.
Collapse
Affiliation(s)
- Tina Gulin-Sarfraz
- Laboratory for Physical Chemistry
- Åbo Akademi University
- 20500 Turku, Finland
| | - Jixi Zhang
- Laboratory for Physical Chemistry
- Åbo Akademi University
- 20500 Turku, Finland
- Med-X Research Institute and School of Biomedical Engineering
- Shanghai Jiao Tong University
| | - Diti Desai
- Laboratory for Physical Chemistry
- Åbo Akademi University
- 20500 Turku, Finland
| | - Jarmo Teuho
- Turku PET Centre
- Turku University Hospital
- Turku, Finland
| | - Jawad Sarfraz
- Laboratory for Physical Chemistry
- Åbo Akademi University
- 20500 Turku, Finland
| | - Hua Jiang
- Department of Applied Physics
- Aalto University
- Espoo, Finland
| | - Chunfu Zhang
- Med-X Research Institute and School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai, P.R. China
| | - Cecilia Sahlgren
- Turku Centre of Biotechnology
- Åbo Akademi University and University of Turku
- Turku, Finland
- Eindhoven University of Technology
- Eindhoven, The Netherlands
| | - Mika Lindén
- Inorganic Chemistry II
- University of Ulm
- Ulm, Germany
| | - Hongchen Gu
- Med-X Research Institute and School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai, P.R. China
| | | |
Collapse
|