1
|
Omidian H, Wilson RL, Castejon AM. Recent Advances in Peptide-Loaded PLGA Nanocarriers for Drug Delivery and Regenerative Medicine. Pharmaceuticals (Basel) 2025; 18:127. [PMID: 39861188 PMCID: PMC11768227 DOI: 10.3390/ph18010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Peptide-loaded poly(lactide-co-glycolide) (PLGA) nanocarriers represent a transformative approach to addressing the challenges of peptide-based therapies. These systems offer solutions to peptide instability, enzymatic degradation, and limited bioavailability by providing controlled release, targeted delivery, and improved stability. The versatility of PLGA nanocarriers extends across therapeutic domains, including cancer therapy, neurodegenerative diseases, vaccine development, and regenerative medicine. Innovations in polymer chemistry, surface functionalization, and advanced manufacturing techniques, such as microfluidics and electrospraying, have further enhanced the efficacy and scalability of these systems. This review highlights the key physicochemical properties, preparation strategies, and proven benefits of peptide-loaded PLGA systems, emphasizing their role in sustained drug release, immune activation, and tissue regeneration. Despite remarkable progress, challenges such as production scalability, cost, and regulatory hurdles remain.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (R.L.W.); (A.M.C.)
| | | | | |
Collapse
|
2
|
Lenders V, Koutsoumpou X, Phan P, Soenen SJ, Allegaert K, de Vleeschouwer S, Toelen J, Zhao Z, Manshian BB. Modulation of engineered nanomaterial interactions with organ barriers for enhanced drug transport. Chem Soc Rev 2023; 52:4672-4724. [PMID: 37338993 DOI: 10.1039/d1cs00574j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The biomedical use of nanoparticles (NPs) has been the focus of intense research for over a decade. As most NPs are explored as carriers to alter the biodistribution, pharmacokinetics and bioavailability of associated drugs, the delivery of these NPs to the tissues of interest remains an important topic. To date, the majority of NP delivery studies have used tumor models as their tool of interest, and the limitations concerning tumor targeting of systemically administered NPs have been well studied. In recent years, the focus has also shifted to other organs, each presenting their own unique delivery challenges to overcome. In this review, we discuss the recent advances in leveraging NPs to overcome four major biological barriers including the lung mucus, the gastrointestinal mucus, the placental barrier, and the blood-brain barrier. We define the specific properties of these biological barriers, discuss the challenges related to NP transport across them, and provide an overview of recent advances in the field. We discuss the strengths and shortcomings of different strategies to facilitate NP transport across the barriers and highlight some key findings that can stimulate further advances in this field.
Collapse
Affiliation(s)
- Vincent Lenders
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| | - Xanthippi Koutsoumpou
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| | - Philana Phan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Stefaan J Soenen
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Karel Allegaert
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, CN Rotterdam, 3015, The Netherlands
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B3000 Leuven, Belgium
- Leuven Child and Youth Institute, KU Leuven, 3000 Leuven, Belgium
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Steven de Vleeschouwer
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jaan Toelen
- Leuven Child and Youth Institute, KU Leuven, 3000 Leuven, Belgium
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| |
Collapse
|
3
|
Na Y, Zhang N, Zhong X, Gu J, Yan C, Yin S, Lei X, Zhao J, Geng F. Polylactic-co-glycolic acid-based nanoparticles modified with peptides and other linkers cross the blood-brain barrier for targeted drug delivery. Nanomedicine (Lond) 2023; 18:125-143. [PMID: 36916394 DOI: 10.2217/nnm-2022-0287] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Because of the blood-brain barrier, only a limited fraction of drugs can penetrate the brain. As a result, there is a need to take larger doses of the drug, which may result in numerous undesirable side effects. Over the past few decades, a plethora of research has been conducted to address this issue. In recent years, the field of nanomedicine research has reported promising findings. Currently, numerous types of polylactic-co-glycolic acid-based drug-delivery systems are being studied, and great progress has been made in the modification of their surfaces with a variety of ligands. In this review, the authors highlight the preparation of polylactic-co-glycolic acid-based nanoparticles and single- and dual-targeted peptide modifications for site-specific drug delivery into the brain.
Collapse
Affiliation(s)
- Yue Na
- Key Laboratory of Photochemistry Biomaterials & Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| | - Ning Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.,Wuxi Traditional Chinese Medicine Hospital, Wuxi, Jiangsu, 214071, China
| | - Xinyu Zhong
- Key Laboratory of Photochemistry Biomaterials & Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| | - Jinlian Gu
- Key Laboratory of Photochemistry Biomaterials & Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| | - Chang Yan
- Key Laboratory of Photochemistry Biomaterials & Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| | - Shun Yin
- Key Laboratory of Photochemistry Biomaterials & Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| | - Xia Lei
- Wuxi Traditional Chinese Medicine Hospital, Wuxi, Jiangsu, 214071, China
| | - Jihui Zhao
- College of Pharmacy, Hunan University of Medicine, Huaihua, Hunan, 418000, China
| | - Fang Geng
- Key Laboratory of Photochemistry Biomaterials & Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| |
Collapse
|
4
|
Samir M, Abdelkader RM, Boushehri MS, Mansour S, Lamprecht A, Tammam SN. Enhancement of mitochondrial function using NO releasing nanoparticles; a potential approach for therapy of Alzheimer's disease. Eur J Pharm Biopharm 2023; 184:16-24. [PMID: 36640916 DOI: 10.1016/j.ejpb.2023.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Increasing evidence is showing the important role of mitochondrial dysfunction in AD. Mitochondria based oxidative stress, decrease in respiratory chain activity and ATP production are all associated with AD, hence indicating that the enhancement of mitochondrial function and biogenesis present a promising therapeutic approach for AD. Nitric oxide (NO) is an initiator of mitochondrial biogenesis. However, its gaseous nature and very short half-life limit the realization of its therapeutic potential. Additionally, its uncontrolled in-vivo distribution results in generalized vasodilation, hypotension among other off-target effects. Diazeniumdiolates (NONOates) are NO donors that release NO in physiological temperature and pH. Their encapsulation within a hydrophobic matrix carrier system could control the release of NO, and at the same time enable its delivery to the brain. In this work, PAPANONOate (PN) a NO donor was encapsulated in small (92 ± 7 nm) poly (lactic-co-glycolic acid) (PLGA) NPs. These NPs did not induce hemolysis upon intravenous administration and were able to accumulate in the brains of lipopolysaccharides (LPS) induced neurodegeneration mouse models. The encapsulation of PN within a hydrophobic PLGA matrix enabled the sustained release of NO from NPs (≈ 3 folds slower relative to free PN) and successfully delivered PN to brain. As a result, PN-NPs but not free PN resulted in an enhancement in memory and cognition in animals with neurodegeneration as determined by the Y-maze test. The enhancement in cognition was a result of increased mitochondria function as indicated by the increased production of ATP and Cytochrome C oxidase enzyme activity.
Collapse
Affiliation(s)
- Mirna Samir
- Department of Pharmaceutical Technology, German University in Cairo (GUC), Egypt
| | - Reham M Abdelkader
- Department of Pharmacology, Toxicology and German University in Cairo (GUC), Egypt
| | - Maryam Shetab Boushehri
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Samar Mansour
- Department of Pharmaceutical Technology, German University in Cairo (GUC), Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Alf Lamprecht
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Germany; Laboratory of Pharmaceutical Engineering (EA4267), University of Franche-Comté, Besançon, France
| | - Salma N Tammam
- Department of Pharmaceutical Technology, German University in Cairo (GUC), Egypt.
| |
Collapse
|
5
|
Curcumin-loaded zein/pectin nanoparticles: Caco-2 cellular uptake and the effects on cell cycle arrest and apoptosis of human hepatoma cells (HepG2). J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Tizu M, Mărunțelu I, Cristea BM, Nistor C, Ishkitiev N, Mihaylova Z, Tsikandelova R, Miteva M, Caruntu A, Sabliov C, Calenic B, Constantinescu I. PLGA Nanoparticles Uptake in Stem Cells from Human Exfoliated Deciduous Teeth and Oral Keratinocyte Stem Cells. J Funct Biomater 2022; 13:jfb13030109. [PMID: 35997447 PMCID: PMC9397094 DOI: 10.3390/jfb13030109] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
Polymeric nanoparticles have been introduced as a delivery vehicle for active compounds in a broad range of medical applications due to their biocompatibility, stability, controlled release of active compounds, and reduced toxicity. The oral route is the most used approach for delivery of biologics to the body. The homeostasis and function of oral cavity tissues are dependent on the activity of stem cells. The present work focuses, for the first time, on the interaction between two types of polymeric nanoparticles, poly (lactic-co-glycolic acid) or PLGA and PLGA/chitosan, and two stem cell populations, oral keratinocyte stem cells (OKSCs) and stem cells from human exfoliated deciduous teeth (SHEDs). The main results show that statistical significance was observed in OKSCs uptake when compared with normal keratinocytes and transit amplifying cells after 24 h of incubation with 5 and 10 µg/mL PLGA/chitosan. The CD117+ SHED subpopulation incorporated more PLGA/chitosan nanoparticles than nonseparated SHED. The uptake for PLGA/chitosan particles was better than for PLGA particles with longer incubation times, yielding better results in both cell types. The present results demonstrate that nanoparticle uptake depends on stem cell type, incubation time, particle concentration, and surface properties.
Collapse
Affiliation(s)
- Maria Tizu
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Road, 022328 Bucharest, Romania; (M.T.); (I.M.); (I.C.)
| | - Ion Mărunțelu
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Road, 022328 Bucharest, Romania; (M.T.); (I.M.); (I.C.)
| | - Bogdan Mihai Cristea
- Department of Anatomy, Carol Davila University of Medicine and Pharmacy, 8 Blvd Eroii Sanitari, 050474 Bucharest, Romania;
| | - Claudiu Nistor
- Central Military Hospital, Carol Davila University of Medicine and Pharmacy, 134 Stefan Furtuna Street, 010899 Bucharest, Romania;
| | - Nikolay Ishkitiev
- Department of Medical Chemistry and Biochemistry, Medical Univerity of Sofia, Blvd Akademik Ivan Evstratiev Geshov 15, 1431 Sofia, Bulgaria; (N.I.); (M.M.)
| | - Zornitsa Mihaylova
- Department of Oral and Maxillofacial Surgery, Medical Univerity of Sofia, Blvd Akademik Ivan Evstratiev Geshov 15, 1431 Sofia, Bulgaria;
| | - Rozaliya Tsikandelova
- Biosciences Institute, Newcastle University, Catherine Cookson Building, Newcastle upon Tyne NE2 4HH, UK;
| | - Marina Miteva
- Department of Medical Chemistry and Biochemistry, Medical Univerity of Sofia, Blvd Akademik Ivan Evstratiev Geshov 15, 1431 Sofia, Bulgaria; (N.I.); (M.M.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania;
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Cristina Sabliov
- Biological and Agricultural Engineering Department, Louisiana State University and LSU Agricultural Center, 141 E. B. Doran Bldg, Baton Rouge, LA 70803, USA
- Correspondence: (C.S.); (B.C.); Tel.: +1-225-578-1055 (C.S.); +40-755-044-047 (B.C.)
| | - Bogdan Calenic
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Road, 022328 Bucharest, Romania; (M.T.); (I.M.); (I.C.)
- Correspondence: (C.S.); (B.C.); Tel.: +1-225-578-1055 (C.S.); +40-755-044-047 (B.C.)
| | - Ileana Constantinescu
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Road, 022328 Bucharest, Romania; (M.T.); (I.M.); (I.C.)
| |
Collapse
|
7
|
Hamdi M, Elmowafy E, Abdel-Bar HM, ElKashlan AM, Al-Jamal KT, Awad GAS. Hyaluronic acid-entecavir conjugates-core/lipid-shell nanohybrids for efficient macrophage uptake and hepatotropic prospects. Int J Biol Macromol 2022; 217:731-747. [PMID: 35841964 DOI: 10.1016/j.ijbiomac.2022.07.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/05/2022]
Abstract
Drug covalently bound to polymers had formed, lately, platforms with great promise in drug delivery. These drug polymer conjugates (DPC) boosted drug loading and controlled medicine release with targeting ability. Herein, the ability of entecavir (E) conjugated to hyaluronic acid (HA) forming the core of vitamin E coated lipid nanohybrids (EE-HA LPH), to target Kupffer cells and hepatocyte had been proved. The drug was associated to HA with efficiency of 93.48 ± 3.14 % and nanohybrids loading of 22.02 ± 2.3 %. DiI labelled lipidic nanohybrids improved the macrophage uptake in J774 cells with a 21 day hepatocytes retention post intramuscular injection. Finally, in vivo biocompatibility and safety with respect to body weight, organs indices and histopathological alterations were demonstrated. Coating with vitamin E and conjugation of E to HA (a CD44 ligand), could give grounds for prospective application for vectored nano-platform in hepatitis B.
Collapse
Affiliation(s)
- Mohamed Hamdi
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Egypt
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Egypt; Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, United Kingdom.
| | - Akram M ElKashlan
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Egypt
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, United Kingdom
| | - Gehanne A S Awad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| |
Collapse
|
8
|
Mousa AH, Mohammad SA. Potential role of chitosan, PLGA and iron oxide nanoparticles in Parkinson’s disease therapy. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Parkinson's disease (PD) is a debilitating disease that alters an individual's functionality. Parkinsonism is a complex symptom consisting of numerous motor and non-motor features, and although several disorders are responsible, PD remains the most important. Several theories have been proposed for the characteristic pathological changes, the most important of which is the loss of dopaminergic neurons associated with a reduced ability to perform voluntary movements. Many drugs have been developed over the years to treat the condition and prevent its progression, but drug delivery is still a challenge due to the blood–brain barrier, which prevents the passage of drugs into the central nervous system. However, with the advances in nanotechnology in the medical field, there is growing hope of overcoming this challenge.
Summary
Our review highlights the potential role of three commonly studied nanoparticles in laboratory-induced animal models of PD: chitosan, PLGA, and iron oxide nanoparticles as potential PD therapy in humans.
Collapse
|
9
|
Toyos-Rodríguez C, Llamedo-González A, Pando D, García S, García J, García-Alonso F, de la Escosura-Muñiz A. Novel magnetic beads with improved performance for Alzheimer’s disease biomarker detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Shams A, Shabani R, Asgari H, Karimi M, Najafi M, Asghari-Jafarabadi M, Razavi SM, Miri SR, Abbasi M, Mohammadi A, Koruji M. In vitro elimination of EL4 cancer cells from spermatogonia stem cells by miRNA-143- and 206-loaded folic acid conjugated PLGA nanoparticles. Nanomedicine (Lond) 2022; 17:531-545. [PMID: 35264013 DOI: 10.2217/nnm-2021-0210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: MiRNA's-143 and -206 are powerful apoptotic regulators in cancer cells. This study aimed to use miRNA-143- and 206-loaded poly(lactic-co-glycolic) acid (PLGA) nanoparticles conjugated with folic acid to induce apoptosis in the EL4 cancer cells. Materials & methods: The therapy was conducted in six groups: Treatment with both miRNAs simultaneously (mixed miRNAs), miRNA-206 treatment, miRNA-143 treatment, blank PLGA, blank polyethylenimine (PEI) and complex PEI-miRNAs. Results: In terms of viability, in mixed miRNAs, no synergistic effect was observed on EL4 cell elimination. However, in the single miRNA-206 group, a stronger apoptotic effect was observed than the mixed miRNAs group and single miRNA-143 group alone. Conclusion: MiRNAs' apoptotic induction effects in cancer cells were found to be remarkable.
Collapse
Affiliation(s)
- Azar Shams
- Stem cell & Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Stem cell & Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Asgari
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Asghari-Jafarabadi
- Department of Statistics & Epidemiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Mohsen Razavi
- Clinic of Hematology & Oncology, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Rouhollah Miri
- Department of Surgical Oncology, Cancer Institute,Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Mohammadi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Stem cell & Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Hueso M, Mallén A, Suñé-Pou M, Aran JM, Suñé-Negre JM, Navarro E. ncRNAs in Therapeutics: Challenges and Limitations in Nucleic Acid-Based Drug Delivery. Int J Mol Sci 2021; 22:ijms222111596. [PMID: 34769025 PMCID: PMC8584088 DOI: 10.3390/ijms222111596] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are emerging therapeutic tools but there are barriers to their translation to clinical practice. Key issues concern the specificity of the targets, the delivery of the molecules, and their stability, while avoiding “on-target” and “off-target” side effects. In this “ncRNA in therapeutics” issue, we collect several studies of the differential expression of ncRNAs in cardiovascular diseases, bone metabolism-related disorders, neurology, and oncology, and their potential to be used as biomarkers or therapeutic targets. Moreover, we review recent advances in the use of antisense ncRNAs in targeted therapies with a particular emphasis on their basic biological mechanisms, their translational potential, and future trends.
Collapse
Affiliation(s)
- Miguel Hueso
- Department of Nephrology, Hospital Universitari de Bellvitge, 08907 L’Hospitalet de Llobregat, Spain
- Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, 08907 L’Hospitalet de Llobregat, Spain;
- Correspondence: (M.H.); (E.N.); Tel.: +34-932607602 (M.H.); Fax: +34-932607603 (M.H.)
| | - Adrián Mallén
- Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, 08907 L’Hospitalet de Llobregat, Spain;
| | - Marc Suñé-Pou
- Pharmacy and Pharmaceutical Technology and Physical Chemistry Department, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (M.S.-P.); (J.M.S.-N.)
| | - Josep M. Aran
- Immunoinflammatory Processes and Gene Therapeutics Lab, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
| | - Josep M. Suñé-Negre
- Pharmacy and Pharmaceutical Technology and Physical Chemistry Department, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (M.S.-P.); (J.M.S.-N.)
| | - Estanislao Navarro
- Independent Researcher, 08950 Barcelona, Spain
- Correspondence: (M.H.); (E.N.); Tel.: +34-932607602 (M.H.); Fax: +34-932607603 (M.H.)
| |
Collapse
|
12
|
Puccetti M, Gomes Dos Reis L, Pariano M, Costantini C, Renga G, Ricci M, Traini D, Giovagnoli S. Development and in vitro-in vivo performances of an inhalable indole-3-carboxaldehyde dry powder to target pulmonary inflammation and infection. Int J Pharm 2021; 607:121004. [PMID: 34391857 DOI: 10.1016/j.ijpharm.2021.121004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 01/17/2023]
Abstract
A tryptophan metabolite of microbial origin, indole-3-carboxaldehyde (3-IAld), has been recently identified as a Janus molecule that, acting at the host-pathogen interface and activating the aryl hydrocarbon receptor, can result as a potential candidate to treat infections as well as diseases with an inflammatory and/or immune component. In this work, an inhaled dry powder of 3-IAld was developed and evaluated for its efficacy, compared to oral and intranasal administration using an aspergillosis model of infection and inflammation. The obtained inhalable dry powder was shown to: i) be suitable to be delivered for pulmonary administration, ii) possess good toxicological safety, and iii) be superior to other administration modalities (oral and intranasal) in reducing disease scores by acting on infection and inflammation. This study supports the use of 3-IAld inhalable dry powders as a potential novel therapeutic tool to target inflammation and infection in pulmonary diseases.
Collapse
Affiliation(s)
- Matteo Puccetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Larissa Gomes Dos Reis
- Respiratory Technology Group, The Woolcock Institute of Medical Research, Glebe, Sydney, Australia
| | - Marilena Pariano
- Department of Experimental Medicine, University of Perugia, via Gambuli 1, 06132 Perugia, Italy
| | - Claudio Costantini
- Department of Experimental Medicine, University of Perugia, via Gambuli 1, 06132 Perugia, Italy
| | - Giorgia Renga
- Department of Experimental Medicine, University of Perugia, via Gambuli 1, 06132 Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Daniela Traini
- Respiratory Technology Group, The Woolcock Institute of Medical Research, Glebe, Sydney, Australia; Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy.
| |
Collapse
|
13
|
Garanti T, Alhnan MA, Wan KW. The potential of nanotherapeutics to target brain tumors: current challenges and future opportunities. Nanomedicine (Lond) 2021; 16:1833-1837. [PMID: 34251278 DOI: 10.2217/nnm-2021-0134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Tanem Garanti
- Faculty of Pharmacy, Cyprus International University, Haspolat, Nicosia, 99258, Cyprus via Mersin 10, Turkey
| | - Mohamed A Alhnan
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, SE1 9NH, UK
| | - Ka-Wai Wan
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| |
Collapse
|
14
|
Khan S, Siddique R, Huanfei D, Shereen MA, Nabi G, Bai Q, Manan S, Xue M, Ullah MW, Bowen H. Perspective Applications and Associated Challenges of Using Nanocellulose in Treating Bone-Related Diseases. Front Bioeng Biotechnol 2021; 9:616555. [PMID: 34026739 PMCID: PMC8139407 DOI: 10.3389/fbioe.2021.616555] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
Bone serves to maintain the shape of the human body due to its hard and solid nature. A loss or weakening of bone tissues, such as in case of traumatic injury, diseases (e.g., osteosarcoma), or old age, adversely affects the individuals quality of life. Although bone has the innate ability to remodel and regenerate in case of small damage or a crack, a loss of a large volume of bone in case of a traumatic injury requires the restoration of bone function by adopting different biophysical approaches and chemotherapies as well as a surgical reconstruction. Compared to the biophysical and chemotherapeutic approaches, which may cause complications and bear side effects, the surgical reconstruction involves the implantation of external materials such as ceramics, metals, and different other materials as bone substitutes. Compared to the synthetic substitutes, the use of biomaterials could be an ideal choice for bone regeneration owing to their renewability, non-toxicity, and non-immunogenicity. Among the different types of biomaterials, nanocellulose-based materials are receiving tremendous attention in the medical field during recent years, which are used for scaffolding as well as regeneration. Nanocellulose not only serves as the matrix for the deposition of bioceramics, metallic nanoparticles, polymers, and different other materials to develop bone substitutes but also serves as the drug carrier for treating osteosarcomas. This review describes the natural sources and production of nanocellulose and discusses its important properties to justify its suitability in developing scaffolds for bone and cartilage regeneration and serve as the matrix for reinforcement of different materials and as a drug carrier for treating osteosarcomas. It discusses the potential health risks, immunogenicity, and biodegradation of nanocellulose in the human body.
Collapse
Affiliation(s)
- Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rabeea Siddique
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ding Huanfei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ghulam Nabi
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Qian Bai
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sehrish Manan
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hu Bowen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Morris AS, Givens BE, Silva A, Salem AK. Copper Oxide Nanoparticle Diameter Mediates Serum‐Sensitive Toxicity in BEAS‐2B Cells. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Angie S. Morris
- Department of Pharmaceutical Sciences College of Pharmacy University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
- Department of Chemistry College of Liberal Arts and Sciences University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
| | - Brittany E. Givens
- Department of Pharmaceutical Sciences College of Pharmacy University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
- Department of Chemical and Biochemical Engineering College of Engineering University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
- Department of Chemical and Materials Engineering College of Engineering University of Kentucky Lexington KY 40506 USA
| | - Aaron Silva
- Department of Pharmaceutical Sciences College of Pharmacy University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
- Roy J. Carver Department of Biomedical Engineering College of Engineering University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
| | - Aliasger K. Salem
- Department of Pharmaceutical Sciences College of Pharmacy University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
- Department of Chemistry College of Liberal Arts and Sciences University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
- Department of Chemical and Biochemical Engineering College of Engineering University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
- Roy J. Carver Department of Biomedical Engineering College of Engineering University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
| |
Collapse
|
16
|
Formulation of stabilizer-free, nontoxic PLGA and elastin-PLGA nanoparticle delivery systems. Int J Pharm 2021; 597:120340. [PMID: 33545284 DOI: 10.1016/j.ijpharm.2021.120340] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 12/18/2022]
Abstract
Biocompatible nanoparticles composed of poly(lactic-co-glycolic acid) (PLGA) are used as drug and vaccine delivery systems because of their tunability in size and sustained release of cargo molecules. While the use of toxic stabilizers such as polyvinyl alcohol (PVA) limit the utility of PLGA, stabilizer-free PLGA nanoparticles are rarely used because they can be challenging to prepare. Here, we developed a tunable, stabilizer-free PLGA nanoparticle formulation capable of encapsulating plasmid DNA and demonstrated the formation of an elastin-like polymer PLGA hybrid nanoparticle with exceptional stability and biocompatibility. A suite of PLGAs were fabricated using solvent evaporation methods and assessed for particle size and stability in water. We find that under physiological conditions (PBS at 37˚C), the most stable PLGA formulation (P4) was found to contain a greater L:G ratio (65:35), lower MW, and carboxyl terminus. Subsequent experiments determined P4 nanoparticles were as stable as those made with PVA, yet significantly less cytotoxic. Variation in particle size was achieved through altering PLGA stoichiometry while maintaining the ability to encapsulate DNA and were modified with elastin-like polymers for increased immune tolerance. Overall, a useful method for tunable, stabilizer-free PLGA nanoparticle formulation was developed for use in drug and vaccine delivery, and immune targeting.
Collapse
|
17
|
Priwitaningrum DL, Jentsch J, Bansal R, Rahimian S, Storm G, Hennink WE, Prakash J. Apoptosis-inducing peptide loaded in PLGA nanoparticles induces anti-tumor effects in vivo. Int J Pharm 2020; 585:119535. [PMID: 32534162 DOI: 10.1016/j.ijpharm.2020.119535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 01/17/2023]
Abstract
Induction of apoptosis in tumor cells specifically within the complex tumor microenvironment is highly desirable to kill them efficiently and to enhance the effects of chemotherapy. Second mitochondria-derived activator of caspase (Smac) is a key pro-apoptotic pathway which can be activated with a Smac mimetic peptide. However, in vivo application of peptides is hampered by several limitations such as poor pharmacokinetics, rapid elimination, enzymatic degradation, and insufficient intracellular delivery. In this study, we developed a nanosystem to deliver a Smac peptide to tumor by passive targeting. We first synthesized a chimeric peptide that consists of the 8-mer Smac peptide and a 14-mer cell penetrating peptide (CPP) and then encapsulated the Smac-CPP into polymeric nanoparticles (Smac-CPP-NPs). In vitro, Smac-CPP-NPs were rapidly internalized by 4T1 mammary tumor cells and subsequently released Smac-CPP into the cells, as shown with fluorescence microscopy. Furthermore, Smac-CPP-NPs induced apoptosis in tumor cells, as confirmed with cell viability and caspase 3/7 assays. Interestingly, combination of Smac-CPP-NPs with doxorubicin (dox), a clinically used cytostatic drug, showed combined effects in vitro in 4T1 cells. The effect was significantly better than that of SMAC-CPP-NPs alone as well as empty nanoparticles and dox. In vivo, co-treatment with Smac-CPP-NPs and free dox reduced the tumor growth to 85%. Furthermore, the combination of Smac-CPP-NPs and free dox showed reduced proliferating tumor cells (Ki-67 staining) and increased apoptotic cells (cleaved caspase-3 staining) in tumors. In conclusion, the present study demonstrates that the intracellular delivery of Smac-mimetic peptide using nanoparticle system can be an interesting strategy to attenuate the tumor growth and to potentiate the therapeutic efficacy of chemotherapy in vivo.
Collapse
Affiliation(s)
- Dwi L Priwitaningrum
- Targeted Therapeutics and Nanomedicine, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; Department of Pharmaceutics, Faculty of Pharmacy, University of Sumatera Utara, Medan, Indonesia
| | - Julian Jentsch
- Targeted Therapeutics and Nanomedicine, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Ruchi Bansal
- Targeted Therapeutics and Nanomedicine, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Sima Rahimian
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sumatera Utara, Medan, Indonesia
| | - Jai Prakash
- Targeted Therapeutics and Nanomedicine, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
18
|
Gomes Dos Reis L, Lee WH, Svolos M, Moir LM, Jaber R, Engel A, Windhab N, Young PM, Traini D. Delivery of pDNA to lung epithelial cells using PLGA nanoparticles formulated with a cell-penetrating peptide: understanding the intracellular fate. Drug Dev Ind Pharm 2020; 46:427-442. [PMID: 32070151 DOI: 10.1080/03639045.2020.1724134] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The combination of nanoparticles (NPs) and cell-penetrating peptide (CPP) represents a new opportunity to develop plasmid DNA (pDNA) delivery systems with desirable properties for lung delivery. In this study, poly(lactide-co-glycolide) (PLGA) NPs containing pDNA were formulated with and without CPP using a double-emulsion technique. NPs were characterized in regards of size, surface charge, release profile, pDNA encapsulation efficiency and pDNA integrity. Cellular uptake, intracellular trafficking, uptake mechanism and pDNA expression were assessed in both A549 and Beas-2B cells. Manufactured PLGA-NPs efficiently encapsulated pDNA with approximately 50% released in the first 24 h of incubation. Addition of CPP was essential to promote NP internalization in both cell lines, with 83.85 ± 1.2% and 96.76 ± 1.7% of Beas-2B and A549 cells, respectively, with internalized NP-DNA-CPP after 3 h of incubation. Internalization appears to occur mainly via clathrin-mediated endocytosis, with other pathways also being used by the different cell lines. An endosomal-escape mechanism seems to happen in both cell lines, and eGFP expression was observed in Beas-2B after 96 h of incubation. In summary, the NP-DNA-CPP delivery system efficiently encapsulated and protected pDNA structure and is being investigated as a promising tool for gene delivery to the lungs.
Collapse
Affiliation(s)
- Larissa Gomes Dos Reis
- Department of Respiratory Technology, Faculty of Medicine and Health, Woolcock Institute of Medical Research and Discipline of Pharmacology, The University of Sydney, Glebe, NSW, Australia
| | - Wing-Hin Lee
- Department of Respiratory Technology, Faculty of Medicine and Health, Woolcock Institute of Medical Research and Discipline of Pharmacology, The University of Sydney, Glebe, NSW, Australia
| | - Maree Svolos
- Department of Respiratory Technology, Faculty of Medicine and Health, Woolcock Institute of Medical Research and Discipline of Pharmacology, The University of Sydney, Glebe, NSW, Australia
| | - Lyn M Moir
- Department of Respiratory Technology, Faculty of Medicine and Health, Woolcock Institute of Medical Research and Discipline of Pharmacology, The University of Sydney, Glebe, NSW, Australia
| | - Rima Jaber
- Evonik Industries AG, Darmstadt, Germany
| | | | | | - Paul M Young
- Department of Respiratory Technology, Faculty of Medicine and Health, Woolcock Institute of Medical Research and Discipline of Pharmacology, The University of Sydney, Glebe, NSW, Australia
| | - Daniela Traini
- Department of Respiratory Technology, Faculty of Medicine and Health, Woolcock Institute of Medical Research and Discipline of Pharmacology, The University of Sydney, Glebe, NSW, Australia
| |
Collapse
|
19
|
Pottoo FH, Sharma S, Javed MN, Barkat MA, Harshita, Alam MS, Naim MJ, Alam O, Ansari MA, Barreto GE, Ashraf GM. Lipid-based nanoformulations in the treatment of neurological disorders. Drug Metab Rev 2020; 52:185-204. [PMID: 32116044 DOI: 10.1080/03602532.2020.1726942] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/03/2020] [Indexed: 12/27/2022]
Abstract
The neurological disorders affect millions of people worldwide, and are bracketed as the foremost basis of disability-adjusted life years (DALYs). The treatment options are symptomatic and often the movement of drugs is restricted by a specialized network of endothelial cell layers (adjoined by tight cell-to-cell junction proteins; occludin, claudins, and junctional adhesion molecules), pericytes and astroglial foot processes. In recent years, advances in nanomedicine have led to therapies that target central nervous system (CNS) pathobiology via altering signaling mechanisms such as activation of PI3K/Akt pathway in ischemic stroke arrests apoptosis, interruption of α-synuclein aggregation prevents neuronal degeneration in Parkinson's. Often such interactions are limited by insufficient concentrations of drugs reaching neuronal tissues and/or insufficient residence time of drug/s with the receptor. Hence, lipid nanoformulations, SLNs (solid lipid nanoparticles) and NLCs (nanostructured lipid carriers) emerged to overcome these challenges by utilizing physiological transport mechanisms across blood-brain barrier, such as drug-loaded SLN/NLCs adsorb apolipoproteins from the systemic circulation and are taken up by endothelial cells via low-density lipoprotein (LDL)-receptor mediated endocytosis and subsequently unload drugs at target site (neuronal tissue), which imparts selectivity, target ability, and reduction in toxicity. This paper reviews the utilization of SLN/NLCs as carriers for targeted delivery of novel CNS drugs to improve the clinical course of neurological disorders, placing some additional discussion on the metabolism of lipid-based formulations.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Shrestha Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, India
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Research, Jamia Hamdard University, New Delhi, India
- School of Pharmaceutical Sciences, Apeejay Stya University, Gurugram, India
| | - Md Abul Barkat
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, India
| | - Harshita
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, India
| | - Md Sabir Alam
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, India
| | - Mohd Javed Naim
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences and Research, Jamia Hamdard University, New Delhi, India
| | - Ozair Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences and Research, Jamia Hamdard University, New Delhi, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Enhanced Subcellular Trafficking of Resveratrol Using Mitochondriotropic Liposomes in Cancer Cells. Pharmaceutics 2019; 11:pharmaceutics11080423. [PMID: 31434345 PMCID: PMC6722595 DOI: 10.3390/pharmaceutics11080423] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/05/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are membrane-enclosed organelles present in most eukaryotic cells, described as “power houses of the cell”. The mitochondria can be a target for inducing cancer cell death and for developing strategies to bypass multi drug resistance (MDR) mechanisms. 4-Carboxybutyl triphenylphosphonium bromide-polyethylene glycol-distearoylphosphatidylethanolamine (TPP-DSPE-PEG) and dequalinium-polyethylene glycol-distearoylphosphatidylethanolamine (DQA-DSPE-PEG) were synthesized as mitochondriotropic molecules. Mitochondria-targeting liposomes carrying resveratrol were constructed by modifying the liposome’s surface with TPP-PEG or DQA-PEG, resulting in TLS (Res) and DLS (Res), respectively, with the aim to obtain longer blood circulation and enhanced permeability and retention (EPR). Both TLS (Res) and DLS (Res) showed dimensions of approximately 120 nm and a slightly positive zeta potential. The enhanced cellular uptake and selective accumulation of TLS (Res) and DLS (Res) into the mitochondria were demonstrated by behavioral observation of rhodamine-labeled TLS or DLS, using confocal microscopy, and by resveratrol quantification in the intracellular organelle, using LC–MS/MS. Furthermore, TLS (Res) and DLS (Res) induced cytotoxicity of cancer cells by generating reactive oxygen species (ROS) and by dissipating the mitochondrial membrane potential. Our results demonstrated that TLS (Res) and DLS (Res) could provide a potential strategy to treat cancers by mitochondrial targeting delivery of therapeutics and stimulation of the mitochondrial signaling pathway.
Collapse
|
21
|
Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00439-x] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|