1
|
Rabeh ME, Vora LK, Moore JV, Bayan MF, McCoy CP, Wylie MP. Dual stimuli-responsive delivery system for self-regulated colon-targeted delivery of poorly water-soluble drugs. BIOMATERIALS ADVANCES 2024; 157:213735. [PMID: 38154402 DOI: 10.1016/j.bioadv.2023.213735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/30/2023]
Abstract
Inflammatory bowel disease (IBD) are chronic inflammatory conditions which cause significant patient morbidity. Local drug delivery to the colon can improve treatment efficacy and reduce side effects associated with IBD treatment. Smart drug delivery systems are designed to regulate the release of therapeutic agents at the desired site of action. pH-responsive drug carriers have been previously utilised for improved oral drug delivery beyond stomach harsh conditions. Additionally, the colon possesses a diverse microbiome secreting bioactive molecules e.g., enzymes, that can be exploited for targeted drug delivery. We herein synthesised and characterised a 2-hydroxyethyl methacrylate and methacrylic acid copolymer, crosslinked with an azobenzyl crosslinker, that displayed pH- and enzyme-responsive properties. The swelling and drug release from hydrogel were analysed in pH 1.2, 6.5 and 7.4 buffers, and in the presence of rat caecal matter using metronidazole and mesalamine as model BCS Class I and IV drugs, respectively. Swelling studies displayed pH-responsive swelling behaviour, where swelling was maximum at pH 7.4 and minimum at pH 1.2 (69 % versus 32 %). Consequently, drug release was limited in gastric and small intestinal conditions but increased significantly when exposed to colonic conditions containing caecal matter. This system displays promising capacity for achieving colon-targeted drug delivery with enhanced dissolution of poorly water-soluble drugs for local treatment of IBD and other colon-targeted therapies.
Collapse
Affiliation(s)
- Mohmmad E Rabeh
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | | | - Jessica V Moore
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Mohammad F Bayan
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK; Faculty of Pharmacy, Philadelphia University, P.O Box 1, Amman 19392, Jordan
| | - Colin P McCoy
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
| | - Matthew P Wylie
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
| |
Collapse
|
2
|
Markovic M, Ben-Shabat S, Nagendra Manda J, Abramov-Harpaz K, Regev C, Miller Y, Aponick A, Zimmermann EM, Dahan A. PLA 2-Triggered Activation of Cyclosporine-Phospholipid Prodrug as a Drug Targeting Approach in Inflammatory Bowel Disease Therapy. Pharmaceutics 2022; 14:pharmaceutics14030675. [PMID: 35336048 PMCID: PMC8950246 DOI: 10.3390/pharmaceutics14030675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Oral medication with activity specifically at the inflamed sites throughout the gastrointestinal tract and limited systemic exposure would be a major advance in our therapeutic approach to inflammatory bowel disease (IBD). For this purpose, we have designed a prodrug by linking active drug moiety to phospholipid (PL), the substrate of phospholipase A2 (PLA2). PLA2 expression and activity is significantly elevated in the inflamed intestinal tissues of IBD patients. Since PLA2 enzyme specifically hydrolyses the sn-2 bond within PLs, in our PL-based prodrug approach, the sn-2 positioned FA is replaced with cyclosporine, so that PLA2 may be exploited as the prodrug-activating enzyme, releasing the free drug from the PL-complex. Owing to the enzyme overexpression, this may effectively target free cyclosporine to the sites of inflammation. Four PL-cyclosporine prodrugs were synthesized, differing by their linker length between the PL and the drug moiety. To study the prodrug activation, a novel enzymatically enriched model was developed, the colonic brush border membrane vesicles (cBBMVs); in this model, tissue vesicles were produced from colitis-induced (vs. healthy) rat colons. PLA2 overexpression (3.4-fold) was demonstrated in diseased vs. healthy cBBMVs. Indeed, while healthy cBBMVs induced only marginal activation, substantial prodrug activation was evident by colitis-derived cBBMVs. Together with the PLA2 overexpression, these data validate our drug targeting strategy. In the diseased cBBMVs, quick and complete activation of the entire dose was obtained for the 12-carbon linker prodrug, while slow and marginal activation was obtained for the 6/8-carbon linkers. The potential to target the actual sites of inflammation and treat any localizations throughout the GIT, together with the extended therapeutic index, makes this orally delivered prodrug approach an exciting new therapeutic strategy for IBD treatment.
Collapse
Affiliation(s)
- Milica Markovic
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.M.); (S.B.-S.)
| | - Shimon Ben-Shabat
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.M.); (S.B.-S.)
| | | | - Karina Abramov-Harpaz
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (K.A.-H.); (C.R.); (Y.M.)
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Clil Regev
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (K.A.-H.); (C.R.); (Y.M.)
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (K.A.-H.); (C.R.); (Y.M.)
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Aaron Aponick
- Department of Chemistry, University of Florida, Gainesville, FL 32603, USA; (J.N.M.); (A.A.)
| | - Ellen M. Zimmermann
- Department of Medicine, Division of Gastroenterology, University of Florida, Gainesville, FL 32610, USA;
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.M.); (S.B.-S.)
- Correspondence:
| |
Collapse
|
3
|
Markovic M, Abramov-Harpaz K, Regev C, Ben-Shabat S, Aponick A, Zimmermann EM, Miller Y, Dahan A. Prodrug-Based Targeting Approach for Inflammatory Bowel Diseases Therapy: Mechanistic Study of Phospholipid-Linker-Cyclosporine PLA 2-Mediated Activation. Int J Mol Sci 2022; 23:ijms23052673. [PMID: 35269813 PMCID: PMC8910962 DOI: 10.3390/ijms23052673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/14/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Therapeutics with activity specifically at the inflamed sites throughout the gastrointestinal tract (GIT) would be a major advance in our therapeutic approach to inflammatory bowel disease (IBD). We aimed to develop the prodrug approach that can allow such site-specific drug delivery. Currently, using cyclosporine as a drug of choice in IBD is limited to the most severe cases due to substantial systemic toxicities and narrow therapeutic index of this drug. Previously, we synthesized a series of a phospholipid-linker-cyclosporine (PLC) prodrugs designed to exploit the overexpression of phospholipase A2 (PLA2) in the inflamed intestinal tissues, as the prodrug-activating enzyme. Nevertheless, the extent and rate of prodrug activation differed significantly. In this study we applied in-vitro and modern in-silico tools based on molecular dynamics (MD) simulation, to gain insight into the dynamics and mechanisms of the PLC prodrug activation. We aimed to elucidate the reason for the significant activation change between different linker lengths in our prodrug design. Our work reveals that the PLC conjugate with the 12-carbon linker length yields the optimal prodrug activation by PLA2 in comparison to shorter linker length (6-carbons). This optimized length efficiently allows cyclosporine to be released from the prodrug to the active pocket of PLA2. This newly developed mechanistic approach, presented in this study, can be applied for future prodrug optimization to accomplish optimal prodrug activation and drug targeting in various conditions that include overexpression of PLA2.
Collapse
Affiliation(s)
- Milica Markovic
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.M.); (S.B.-S.)
| | - Karina Abramov-Harpaz
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (K.A.-H.); (C.R.)
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Clil Regev
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (K.A.-H.); (C.R.)
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Shimon Ben-Shabat
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.M.); (S.B.-S.)
| | - Aaron Aponick
- Department of Chemistry, University of Florida, Gainesville, FL 32603, USA;
| | - Ellen M. Zimmermann
- Department of Medicine, Division of Gastroenterology, University of Florida, Gainesville, FL 32610, USA;
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (K.A.-H.); (C.R.)
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Correspondence: (Y.M.); (A.D.)
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.M.); (S.B.-S.)
- Correspondence: (Y.M.); (A.D.)
| |
Collapse
|
4
|
Mollazadeh S, Sahebkar A, Shahlaei M, Moradi S. Nano drug delivery systems: Molecular dynamic simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115823] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Markovic M, Ben-Shabat S, Dahan A. Prodrugs for Improved Drug Delivery: Lessons Learned from Recently Developed and Marketed Products. Pharmaceutics 2020; 12:pharmaceutics12111031. [PMID: 33137942 PMCID: PMC7692606 DOI: 10.3390/pharmaceutics12111031] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
Prodrugs are bioreversible, inactive drug derivatives, which have the ability to convert into a parent drug in the body. In the past, prodrugs were used as a last option; however, nowadays, prodrugs are considered already in the early stages of drug development. Optimal prodrug needs to have effective absorption, distribution, metabolism, and elimination (ADME) features to be chemically stable, to be selective towards the particular site in the body, and to have appropriate safety. Traditional prodrug approach aims to improve physicochemical/biopharmaceutical drug properties; modern prodrugs also include cellular and molecular parameters to accomplish desired drug effect and site-specificity. Here, we present recently investigated prodrugs, their pharmaceutical and clinical advantages, and challenges facing the overall prodrug development. Given examples illustrate that prodrugs can accomplish appropriate solubility, increase permeability, provide site-specific targeting (i.e., to organs, tissues, enzymes, or transporters), overcome rapid drug metabolism, decrease toxicity, or provide better patient compliance, all with the aim to provide optimal drug therapy and outcome. Overall, the prodrug approach is a powerful tool to decrease the time/costs of developing new drug entities and improve overall drug therapy.
Collapse
Affiliation(s)
| | | | - Arik Dahan
- Correspondence: ; Tel.: +972-8-6479483; Fax: +972-8-6479303
| |
Collapse
|
6
|
Li X, Lu C, Yang Y, Yu C, Rao Y. Site-specific targeted drug delivery systems for the treatment of inflammatory bowel disease. Biomed Pharmacother 2020; 129:110486. [PMID: 32768972 DOI: 10.1016/j.biopha.2020.110486] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) includes Crohn's disease and ulcerative colitis and manifests as a complex and dysregulated immune response. To date, there is no cure for IBD; thus, lifelong administration of maintenance drugs is often necessary. Since conventional IBD treatment strategies do not target the sites of inflammation, only limited efficacy is observed with their use. Moreover, the possibility of severe side effects resulting from systemic drug redistribution is high when conventional drug treatments are used. Therefore, a straightforward disease-targeted drug delivery system is desirable. Based on the pathophysiological changes associated with IBD, novel site-specific targeted drug delivery strategies that deliver drugs directly to the inflammation sites can enhance drug accumulation and decrease side effects. This review summarizes novel inflammation targeted delivery systems in the management of IBD. It also discusses the challenges and new perspectives in this field.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chao Lu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yanyan Yang
- Department of Pharmacology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Yuefeng Rao
- Department of Pharmacology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
7
|
Markovic M, Ben-Shabat S, Dahan A. Computational Simulations to Guide Enzyme-Mediated Prodrug Activation. Int J Mol Sci 2020; 21:ijms21103621. [PMID: 32443905 PMCID: PMC7279318 DOI: 10.3390/ijms21103621] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Prodrugs are designed to improve pharmaceutical/biopharmaceutical characteristics, pharmacokinetic/pharmacodynamic properties, site-specificity, and more. A crucial step in successful prodrug is its activation, which releases the active parent drug, exerting a therapeutic effect. Prodrug activation can be based on oxidation/reduction processes, or through enzyme-mediated hydrolysis, from oxidoreductases (i.e., Cytochrome P450) to hydrolytic enzymes (i.e., carboxylesterase). This study provides an overview of the novel in silico methods for the optimization of enzyme-mediated prodrug activation. Computational methods simulating enzyme-substrate binding can be simpler like molecular docking, or more complex, such as quantum mechanics (QM), molecular mechanics (MM), and free energy perturbation (FEP) methods such as molecular dynamics (MD). Examples for MD simulations used for elucidating the mechanism of prodrug (losartan, paclitaxel derivatives) metabolism via CYP450 enzyme are presented, as well as an MD simulation for optimizing linker length in phospholipid-based prodrugs. Molecular docking investigating quinazolinone prodrugs as substrates for alkaline phosphatase is also presented, as well as QM and MD simulations used for optimal fit of different prodrugs within the human carboxylesterase 1 catalytical site. Overall, high quality computational simulations may show good agreement with experimental results, and should be used early in the prodrug development process.
Collapse
|
8
|
Markovic M, Ben-Shabat S, Aponick A, Zimmermann EM, Dahan A. Lipids and Lipid-Processing Pathways in Drug Delivery and Therapeutics. Int J Mol Sci 2020; 21:ijms21093248. [PMID: 32375338 PMCID: PMC7247327 DOI: 10.3390/ijms21093248] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of this work is to analyze relevant endogenous lipid processing pathways, in the context of the impact that lipids have on drug absorption, their therapeutic use, and utilization in drug delivery. Lipids may serve as biomarkers of some diseases, but they can also provide endogenous therapeutic effects for certain pathological conditions. Current uses and possible clinical benefits of various lipids (fatty acids, steroids, triglycerides, and phospholipids) in cancer, infectious, inflammatory, and neurodegenerative diseases are presented. Lipids can also be conjugated to a drug molecule, accomplishing numerous potential benefits, one being the improved treatment effect, due to joined influence of the lipid carrier and the drug moiety. In addition, such conjugates have increased lipophilicity relative to the parent drug. This leads to improved drug pharmacokinetics and bioavailability, the ability to join endogenous lipid pathways and achieve drug targeting to the lymphatics, inflamed tissues in certain autoimmune diseases, or enable overcoming different barriers in the body. Altogether, novel mechanisms of the lipid role in diseases are constantly discovered, and new ways to exploit these mechanisms for the optimal drug design that would advance different drug delivery/therapy aspects are continuously emerging.
Collapse
Affiliation(s)
- Milica Markovic
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.M.); (S.B.-S.)
| | - Shimon Ben-Shabat
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.M.); (S.B.-S.)
| | - Aaron Aponick
- Department of Chemistry, University of Florida, Gainesville, FL 32603, USA;
| | - Ellen M. Zimmermann
- Department of Medicine, Division of Gastroenterology, University of Florida, Gainesville, FL 32610, USA;
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.M.); (S.B.-S.)
- Correspondence:
| |
Collapse
|
9
|
Strategic Approaches for Colon Targeted Drug Delivery: An Overview of Recent Advancements. Pharmaceutics 2020; 12:pharmaceutics12010068. [PMID: 31952340 PMCID: PMC7022598 DOI: 10.3390/pharmaceutics12010068] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/05/2020] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Colon targeted drug delivery systems have gained a great deal of attention as potential carriers for the local treatment of colonic diseases with reduced systemic side effects and also for the enhanced oral delivery of various therapeutics vulnerable to acidic and enzymatic degradation in the upper gastrointestinal tract. In recent years, the global pharmaceutical market for biologics has grown, and increasing demand for a more patient-friendly drug administration system highlights the importance of colonic drug delivery as a noninvasive delivery approach for macromolecules. Colon-targeted drug delivery systems for macromolecules can provide therapeutic benefits including better patient compliance (because they are pain-free and can be self-administered) and lower costs. Therefore, to achieve more efficient colonic drug delivery for local or systemic drug effects, various strategies have been explored including pH-dependent systems, enzyme-triggered systems, receptor-mediated systems, and magnetically-driven systems. In this review, recent advancements in various approaches for designing colon targeted drug delivery systems and their pharmaceutical applications are covered with a particular emphasis on formulation technologies.
Collapse
|
10
|
The prospects of lipidic prodrugs: an old approach with an emerging future. Future Med Chem 2019; 11:2563-2571. [DOI: 10.4155/fmc-2019-0155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nowadays, prodrugs are no longer used as a last resort, rather, they are intentionally designed at the early stages of drug development. Lipidic prodrug strategy, where a drug moiety is covalently bound to a lipid carrier, was initially proposed half a century ago, yet, this approach still remains to be explored. Lipidic prodrugs can join physiological lipid metabolic pathways, and hence provide drug targeting via lymphatic transport or site-specific drug release, improve drugs’ pharmacokinetic profile, overcome obstacles originating from biological barriers and bypass hepatic first-pass metabolism. Physiological pathways of lipid processing, uses of different lipidic prodrugs and their clinical benefits are overviewed. Overall, lipidic prodrugs present a promising approach for overcoming different obstacles and fulfilling various unmet needs in drug delivery/targeting.
Collapse
|