1
|
Bezjak D, Orellana N, Valdivia G, Acevedo CA, Valdes JH. Global transcriptome profiles provide insights into muscle cell development and differentiation on microstructured marine biopolymer scaffolds for cultured meat production. Sci Rep 2024; 14:10931. [PMID: 38740842 PMCID: PMC11091069 DOI: 10.1038/s41598-024-61458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Biomaterial scaffolds play a pivotal role in the advancement of cultured meat technology, facilitating essential processes like cell attachment, growth, specialization, and alignment. Currently, there exists limited knowledge concerning the creation of consumable scaffolds tailored for cultured meat applications. This investigation aimed to produce edible scaffolds featuring both smooth and patterned surfaces, utilizing biomaterials such as salmon gelatin, alginate, agarose and glycerol, pertinent to cultured meat and adhering to food safety protocols. The primary objective of this research was to uncover variations in transcriptomes profiles between flat and microstructured edible scaffolds fabricated from marine-derived biopolymers, leveraging high-throughput sequencing techniques. Expression analysis revealed noteworthy disparities in transcriptome profiles when comparing the flat and microstructured scaffold configurations against a control condition. Employing gene functional enrichment analysis for the microstructured versus flat scaffold conditions yielded substantial enrichment ratios, highlighting pertinent gene modules linked to the development of skeletal muscle. Notable functional aspects included filament sliding, muscle contraction, and the organization of sarcomeres. By shedding light on these intricate processes, this study offers insights into the fundamental mechanisms underpinning the generation of muscle-specific cultured meat.
Collapse
Affiliation(s)
- Dragica Bezjak
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
| | - Nicole Orellana
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
| | - Guillermo Valdivia
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Avenida República 239, Santiago, Chile
| | - Cristian A Acevedo
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaiso, Chile.
- Centro Científico Tecnológico de Valparaíso (CCTVal), Universidad Técnica Federico Santa María, Avenida España 1680, Valparaiso, Chile.
| | - Jorge H Valdes
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Avenida República 239, Santiago, Chile.
| |
Collapse
|
2
|
Ahmad SS, Ahmad K, Lim JH, Shaikh S, Lee EJ, Choi I. Therapeutic applications of biological macromolecules and scaffolds for skeletal muscle regeneration: A review. Int J Biol Macromol 2024; 267:131411. [PMID: 38588841 DOI: 10.1016/j.ijbiomac.2024.131411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/10/2024]
Abstract
Skeletal muscle (SM) mass and strength maintenance are important requirements for human well-being. SM regeneration to repair minor injuries depends upon the myogenic activities of muscle satellite (stem) cells. However, losses of regenerative properties following volumetric muscle loss or severe trauma or due to congenital muscular abnormalities are not self-restorable, and thus, these conditions have major healthcare implications and pose clinical challenges. In this context, tissue engineering based on different types of biomaterials and scaffolds provides an encouraging means of structural and functional SM reconstruction. In particular, biomimetic (able to transmit biological signals) and several porous scaffolds are rapidly evolving. Several biological macromolecules/biomaterials (collagen, gelatin, alginate, chitosan, and fibrin etc.) are being widely used for SM regeneration. However, available alternatives for SM regeneration must be redesigned to make them more user-friendly and economically feasible with longer shelf lives. This review aimed to explore the biological aspects of SM regeneration and the roles played by several biological macromolecules and scaffolds in SM regeneration in cases of volumetric muscle loss.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea.
| |
Collapse
|
3
|
Niculescu AG, Georgescu M, Marinas IC, Ustundag CB, Bertesteanu G, Pinteală M, Maier SS, Al-Matarneh CM, Angheloiu M, Chifiriuc MC. Therapeutic Management of Malignant Wounds: An Update. Curr Treat Options Oncol 2024; 25:97-126. [PMID: 38224423 DOI: 10.1007/s11864-023-01172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
OPINION STATEMENT Malignant fungating wounds (MFW) are severe skin conditions generating tremendous distress in oncological patients with advanced cancer stages because of pain, malodor, exudation, pruritus, inflammation, edema, and bleeding. The classical therapeutic approaches such as surgery, opioids, antimicrobials, and application of different wound dressings are failing in handling pain, odor, and infection control, thus urgently requiring the development of alternative strategies. The aim of this review was to provide an update on the current therapeutic strategies and the perspectives on developing novel alternatives for better malignant wound management. The last decade screened literature evidenced an increasing interest in developing natural treatment alternatives based on beehive, plant extracts, pure vegetal compounds, and bacteriocins. Promising therapeutics can also be envisaged by involving nanotechnology due to either intrinsic biological activities or drug delivery properties of nanomaterials. Despite recent progress in the field of malignant wound care, the literature is still mainly based on in vitro and in vivo studies on small animal models, while the case reports and clinical trials (less than 10 and only one providing public results) remain scarce. Some innovative treatment approaches are used in clinical practice without prior extensive testing in fungating wound patients. Extensive research is urgently needed to fill this knowledge gap and translate the identified promising therapeutic approaches to more advanced testing stages toward creating multidimensional wound care strategies.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061, Bucharest, Romania
| | - Mihaela Georgescu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Department of Dermatology, Dr. Carol Davila Central Military, Emergency University Hospital, Bucharest, Romania
| | - Ioana Cristina Marinas
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania.
| | - Cem Bulent Ustundag
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Gloria Bertesteanu
- ENT Department, University of Medicine and Pharmacy Carol Davila and Coltea Clinical Hospital, 020022, Bucharest, Romania
| | - Mariana Pinteală
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
| | - Stelian Sergiu Maier
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
- Department of Chemical Engineering, Faculty of Industrial Design and Business Management, Gheorghe Asachi" Technical University of Iasi, Iasi, Romania
| | - Cristina Maria Al-Matarneh
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
| | - Marian Angheloiu
- Research and Development Department of SC Sanimed International Impex SRL, 6 Bucharest-Giurgiu Street, Giurgiu, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Street, Bucharest, Romania
- The Romanian Academy, 25, Calea Victoriei, District 1, Bucharest, Romania
| |
Collapse
|
4
|
Kozan NG, Joshi M, Sicherer ST, Grasman JM. Porous biomaterial scaffolds for skeletal muscle tissue engineering. Front Bioeng Biotechnol 2023; 11:1245897. [PMID: 37854885 PMCID: PMC10579822 DOI: 10.3389/fbioe.2023.1245897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Volumetric muscle loss is a traumatic injury which overwhelms the innate repair mechanisms of skeletal muscle and results in significant loss of muscle functionality. Tissue engineering seeks to regenerate these injuries through implantation of biomaterial scaffolds to encourage endogenous tissue formation and to restore mechanical function. Many types of scaffolds are currently being researched for this purpose. Scaffolds are typically made from either natural, synthetic, or conductive polymers, or any combination therein. A major criterion for the use of scaffolds for skeletal muscle is their porosity, which is essential for myoblast infiltration and myofiber ingrowth. In this review, we summarize the various methods of fabricating porous biomaterial scaffolds for skeletal muscle regeneration, as well as the various types of materials used to make these scaffolds. We provide guidelines for the fabrication of scaffolds based on functional requirements of skeletal muscle tissue, and discuss the general state of the field for skeletal muscle tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Jonathan M. Grasman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
5
|
Buscaglia M, Guérard F, Roquefort P, Aubry T, Fauchon M, Toueix Y, Stiger-Pouvreau V, Hellio C, Le Blay G. Mechanically Enhanced Salmo salar Gelatin by Enzymatic Cross-linking: Premise of a Bioinspired Material for Food Packaging, Cosmetics, and Biomedical Applications. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:801-819. [PMID: 35915285 DOI: 10.1007/s10126-022-10150-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Marine animal by-products of the food industry are a great source of valuable biomolecules. Skins and bones are rich in collagen, a protein with various applications in food, cosmetic, healthcare, and medical industries in its native form or partially hydrolyzed (gelatin). Salmon gelatin is a candidate of interest due to its high biomass production available through salmon consumption, its biodegradability, and its high biocompatibility. However, its low mechanical and thermal properties can be an obstacle for various applications requiring cohesive material. Thus, gelatin modification by cross-linking is necessary. Enzymatic cross-linking by microbial transglutaminase (MTG) is preferred to chemical cross-linking to avoid the formation of potentially cytotoxic residues. In this work, the potential of salmon skin gelatin was investigated, in a comparative study with porcine gelatin, and an enzymatic versus chemical cross-linking analysis. For this purpose, the two cross-linking methods were applied to produce three-dimensional, porous, and mechanically reinforced hydrogels and sponges with different MTG ratios (2%, 5%, and 10% w/w gelatin). Their biochemical, rheological, and structural properties were characterized, as well as the stability of the material, including the degree of syneresis and the water-binding capacity. The results showed that gelatin enzymatically cross-linked produced material with high cross-linking densities over 70% of free amines. The MTG addition seemed to play a crucial role, as shown by the increase in mechanical and thermal resistances with the production of a cohesive material stable above 40 °C for at least 7 days and comparable to porcine and chemically cross-linked gelatins. Two prototypes were obtained with similar thermal resistances but different microstructures and viscoelastic properties, due to different formation dynamics of the covalent network. Considering these results, the enzymatically cross-linked salmon gelatin is a relevant candidate as a biopolymer for the production of matrix for a wide range of biotechnological applications such as food packaging, cosmetic patch, wound healing dressing, or tissue substitute.
Collapse
Affiliation(s)
- Manon Buscaglia
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Fabienne Guérard
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Philippe Roquefort
- UMR CNRS 6027, IRDL, Université de Bretagne Occidentale, 29200, Brest, France
| | - Thierry Aubry
- UMR CNRS 6027, IRDL, Université de Bretagne Occidentale, 29200, Brest, France
| | - Marilyne Fauchon
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Yannick Toueix
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | | | - Claire Hellio
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | | |
Collapse
|
6
|
Soliman AM, Teoh SL, Das S. Fish Gelatin: Current Nutritional, Medicinal, Tissue Repair Applications and Carrier of Drug Delivery. Curr Pharm Des 2022; 28:1019-1030. [PMID: 35088658 DOI: 10.2174/1381612828666220128103725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Gelatin is obtained via partial denaturation of collagen and is extensively used in various industries. The majority of gelatin utilized globally is derived from a mammalian source. Several health and religious concerns associated with porcine/bovine gelatin were reported. Therefore, gelatin from a marine source is widely being investigated for its efficiency and utilization in a variety of applications as a potential substitute for porcine/bovine gelatin. Although fish gelatin is less durable and possesses lower melting and gelling temperatures compared to mammal-derived gelatin, various modifications are being reported to promote its rheological and functional properties to be efficiently employed. The present review describes in detail the current innovative applications of fish gelatin involving the food industry, drug delivery and possible therapeutic applications. Gelatin bioactive molecules may be utilized as carriers for drug delivery. Due to its versatility, gelatin can be used in different carrier systems, such as microparticles, nanoparticles, fibers and hydrogels. The present review also provides a perspective on the other potential pharmaceutical applications of fish gelatin, such as tissue regeneration, antioxidant supplementation, antihypertensive and anticancer treatments.
Collapse
Affiliation(s)
- Amro M Soliman
- Department of Biological Sciences-Physiology, Cell and Developmental Biology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|
7
|
Naomi R, Bahari H, Ridzuan PM, Othman F. Natural-Based Biomaterial for Skin Wound Healing (Gelatin vs. Collagen): Expert Review. Polymers (Basel) 2021; 13:2319. [PMID: 34301076 PMCID: PMC8309321 DOI: 10.3390/polym13142319] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/28/2022] Open
Abstract
Collagen (Col) and gelatin are most extensively used in various fields, particularly in pharmaceuticals and therapeutics. Numerous researchers have proven that they are highly biocompatible to human tissues, exhibit low antigenicity and are easy to degrade. Despite their different sources both Col and gelatin have almost the same effects when it comes to wound healing mechanisms. Considering this, the bioactivity and biological effects of both Col and gelatin have been, and are being, constantly investigated through in vitro and in vivo assays to obtain maximum outcomes in the future. With regard to their proven nutritional values as sources of protein, Col and gelatin products exert various possible biological activities on cells in the extracellular matrix (ECM). In addition, a vast number of novel Col and gelatin applications have been discovered. This review compared Col and gelatin in terms of their structures, sources of derivatives, physicochemical properties, results of in vitro and in vivo studies, their roles in wound healing and the current challenges in wound healing. Thus, this review provides the current insights and the latest discoveries on both Col and gelatin in their wound healing mechanisms.
Collapse
Affiliation(s)
- Ruth Naomi
- Department of Human Anatomy, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (R.N.); (H.B.)
| | - Hasnah Bahari
- Department of Human Anatomy, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (R.N.); (H.B.)
| | | | - Fezah Othman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
8
|
Xia T, Xie F, Bian X, Chen Z, Zhang S, Fang Z, Ye Q, Cai J, Wang Y. Ultrabroad-spectrum, multidrug resistant bacteria-killing, and biocompatible quaternized chitin derivative for infected wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112177. [PMID: 34082977 DOI: 10.1016/j.msec.2021.112177] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022]
Abstract
Wound infections have consistently been recognized as serious threats to human. The design of antimicrobial and biocompatible wound dressings for infected wounds is an area of constant research. Herein, we homogeneously synthesized an ultrabroad-spectrum antimicrobial and biocompatible quaternized chitin derivative (QC-4) in a high-efficiency and sustainable route using aqueous KOH/urea solution. Particularly, QC-4 displayed powerful multidrug resistant bacteria-killing activities even at a very low antimicrobial concentration range from 500 ng/mL to 5 μg/mL, including clinically prevalent multidrug-resistant Escherichia coli (MDR-E. coli), methicillin resistant Staphylococcus aureus (MRSA), multidrug-resistant Pseudomonas aeruginosa (MRPA), and multidrug-resistant Acinetobacter baumannii (MDR-A. baumannii). With the aim to facilitate clinical translation, we validated the biocompatibility and safety of QC-4 both in vitro and in vivo, and further assessed the effects of QC-4 on infected wound healing in a porcine infectious full-thickness skin wound model. QC-4 demonstrated significant reduction of microbial aggregates and enhanced wound-healing effects by promoted re-epithelialization and collagen deposition, which were quite comparable to that of commercial Alginate-Ag dressing and absolutely superior to commercial Chitoclot Bandage dressing. Additionally, we provided clear evidences that QC-4 had a unique mechanism of action by attracting electrostatically to the negatively charged microbial surface, thus damaging the microbial cell wall and membrane. Findings of this work provided robust preclinical rationale for the future translational applications of QC-4 as a novel ultrabroad-spectrum and multidrug resistant bacteria-killing antimicrobial wound dressing for clinical wound management.
Collapse
Affiliation(s)
- Tian Xia
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan 430072, China
| | - Fang Xie
- Hubei Engineering Center of Natural Polymers-based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoen Bian
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan 430072, China
| | - Zuhan Chen
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan 430072, China
| | - Shichen Zhang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan 430072, China
| | - Zehong Fang
- Jiangxi Provincial People's Hospital of Nanchang University, Department of General Surgery, Nanchang 330006, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan 430072, China
| | - Jie Cai
- Hubei Engineering Center of Natural Polymers-based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan 430072, China; Research Institute of Shenzhen, Wuhan University, Shenzhen 518057, China.
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan 430072, China; Hubei Engineering Center of Natural Polymers-based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
9
|
Evaluation of Keratin/Bacterial Cellulose Based Scaffolds as Potential Burned Wound Dressing. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11051995] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The study presents the preparation and characterization of new scaffolds based on bacterial cellulose and keratin hydrogel which were seeded with adipose stem cells. The bacterial cellulose was obtained by developing an Acetobacter xylinum culture and was visualized using SEM (scanning electron microscopy) and elementally determined through EDAX (dispersive X-ray analysis) tests. Keratin species (β–keratose and γ-keratose) was extracted by hydrolytic degradation from non-dyed human hair. SEM, EDAX and conductometric titration tests were performed for physical–chemical and morphological evaluation. Cytocompatibility tests performed in vitro confirmed the material non-toxic effect on cells. The scaffolds, with and without stem cells, were grafted on the burned wounds on the rabbit’s dorsal region and the grafts were monitored for 21 days after the application on the wounds. The clinical monitoring of the grafts and the histopathological examination demonstrated the regenerative potential of the bacterial cellulose–keratin scaffolds, under the test conditions.
Collapse
|
10
|
Manufacturing micropatterned collagen scaffolds with chemical-crosslinking for development of biomimetic tissue-engineered oral mucosa. Sci Rep 2020; 10:22192. [PMID: 33335194 PMCID: PMC7747639 DOI: 10.1038/s41598-020-79114-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
The junction between the epithelium and the underlying connective tissue undulates, constituting of rete ridges, which lack currently available soft tissue constructs. In this study, using a micro electro mechanical systems process and soft lithography, fifteen negative molds, with different dimensions and aspect ratios in grid- and pillar-type configurations, were designed and fabricated to create three-dimensional micropatterns and replicated onto fish-scale type I collagen scaffolds treated with chemical crosslinking. Image analyses showed the micropatterns were well-transferred onto the scaffold surfaces, showing the versatility of our manufacturing system. With the help of rheological test, the collagen scaffold manufactured in this study was confirmed to be an ideal gel and have visco-elastic features. As compared with our previous study, its mechanical and handling properties were improved by chemical cross-linking, which is beneficial for grafting and suturing into the complex structures of oral cavity. Histologic evaluation of a tissue-engineered oral mucosa showed the topographical microstructures of grid-type were well-preserved, rather than pillar-type, a well-stratified epithelial layer was regenerated on all scaffolds and the epithelial rete ridge-like structure was developed. As this three-dimensional microstructure is valuable for maintaining epithelial integrity, our micropatterned collagen scaffolds can be used not only intraorally but extraorally as a graft material for human use.
Collapse
|
11
|
Acevedo CA, Olguín Y, Orellana N, Sánchez E, Pepczynska M, Enrione J. Anatase Incorporation to Bioactive Scaffolds Based on Salmon Gelatin and Its Effects on Muscle Cell Growth. Polymers (Basel) 2020; 12:E1943. [PMID: 32872101 PMCID: PMC7563125 DOI: 10.3390/polym12091943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/23/2020] [Accepted: 08/23/2020] [Indexed: 11/16/2022] Open
Abstract
The development of new polymer scaffolds is essential for tissue engineering and for culturing cells. The use of non-mammalian bioactive components to formulate these materials is an emerging field. In our previous work, a scaffold based on salmon gelatin was developed and tested in animal models to regenerate tissues effectively and safely. Here, the incorporation of anatase nanoparticles into this scaffold was formulated, studying the new composite structure by scanning electron microscopy, differential scanning calorimetry and dynamic mechanical analysis. The incorporation of anatase nanoparticles modified the scaffold microstructure by increasing the pore size from 208 to 239 µm and significantly changing the pore shape. The glass transition temperature changed from 46.9 to 55.8 °C, and an increase in the elastic modulus from 79.5 to 537.8 kPa was observed. The biocompatibility of the scaffolds was tested using C2C12 myoblasts, modulating their attachment and growth. The anatase nanoparticles modified the stiffness of the material, making it possible to increase the growth of myoblasts cultured onto scaffolds, which envisions their use in muscle tissue engineering.
Collapse
Affiliation(s)
- Cristian A. Acevedo
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (C.A.A.); (N.O.); (E.S.)
- Centro Científico Tecnológico de Valparaíso CCTVaL, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile;
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile
| | - Yusser Olguín
- Centro Científico Tecnológico de Valparaíso CCTVaL, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile;
| | - Nicole Orellana
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (C.A.A.); (N.O.); (E.S.)
| | - Elizabeth Sánchez
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (C.A.A.); (N.O.); (E.S.)
| | - Marzena Pepczynska
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de los Andes, Monseñor Álvaro del Portillo 12455, Las Condes, Santiago 7550000, Chile;
- Biopolymer Research and Engineering Lab., Center for Biomedical Research and Innovation (CIIB), Universidad de los Andes, Monseñor Álvaro del Portillo 12455, Las Condes, Santiago 7550000, Chile
| | - Javier Enrione
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de los Andes, Monseñor Álvaro del Portillo 12455, Las Condes, Santiago 7550000, Chile;
- Biopolymer Research and Engineering Lab., Center for Biomedical Research and Innovation (CIIB), Universidad de los Andes, Monseñor Álvaro del Portillo 12455, Las Condes, Santiago 7550000, Chile
| |
Collapse
|
12
|
Mulholland EJ. Electrospun Biomaterials in the Treatment and Prevention of Scars in Skin Wound Healing. Front Bioeng Biotechnol 2020; 8:481. [PMID: 32582653 PMCID: PMC7283777 DOI: 10.3389/fbioe.2020.00481] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Electrospinning is a promising method for the rapid and cost-effective production of nanofibers from a wide variety of polymers given the high surface area morphology of these nanofibers, they make excellent wound dressings, and so have significant potential in the prevention and treatment of scars. Wound healing and the resulting scar formation are exceptionally well-characterized on a molecular and cellular level. Despite this, novel effective anti-scarring treatments which exploit this knowledge are still clinically absent. As the process of electrospinning can produce fibers from a variety of polymers, the treatment avenues for scars are vast, with therapeutic potential in choice of polymers, drug incorporation, and cell-seeded scaffolds. It is essential to show the new advances in this field; thus, this review will investigate the molecular processes of wound healing and scar tissue formation, the process of electrospinning, and examine how electrospun biomaterials can be utilized and adapted to wound repair in the hope of reducing scar tissue formation and conferring an enhanced tensile strength of the skin. Future directions of the research will explore potential novel electrospun treatments, such as gene therapies, as targets for enhanced tissue repair applications. With this class of biomaterial gaining such momentum and having such promise, it is necessary to refine our understanding of its process to be able to combine this technology with cutting-edge therapies to relieve the burden scars place on world healthcare systems.
Collapse
Affiliation(s)
- Eoghan J. Mulholland
- Gastrointestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Orellana N, Sánchez E, Benavente D, Prieto P, Enrione J, Acevedo CA. A New Edible Film to Produce In Vitro Meat. Foods 2020; 9:foods9020185. [PMID: 32069986 PMCID: PMC7073543 DOI: 10.3390/foods9020185] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
In vitro meat is a novel concept of food science and biotechnology. Methods to produce in vitro meat employ muscle cells cultivated on a scaffold in a serum-free medium using a bioreactor. The microstructure of the scaffold is a key factor, because muscle cells must be oriented to generate parallel alignments of fibers. This work aimed to develop a new scaffold (microstructured film) to grow muscle fibers. The microstructured edible films were made using micromolding technology. A micromold was tailor-made using a laser cutting machine to obtain parallel fibers with a diameter in the range of 70-90 µm. Edible films were made by means of solvent casting using non-mammalian biopolymers. Myoblasts were cultured on flat and microstructured films at three cell densities. Cells on the microstructured films grew with a muscle fiber morphology, but in the case of using the flat film, they only produced unorganized cell proliferation. Myogenic markers were assessed using quantitative polymerase chain reaction. After 14 days, the expression of desmin, myogenin, and myosin heavy chain were significantly higher in microstructured films compared to the flat films. The formation of fiber morphology and the high expression of myogenic markers indicated that a microstructured edible film can be used for the production of in vitro meat.
Collapse
Affiliation(s)
- Nicole Orellana
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (N.O.); (E.S.)
| | - Elizabeth Sánchez
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (N.O.); (E.S.)
| | - Diego Benavente
- Departamento de Ingeniería en Diseño, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (D.B.); (P.P.)
| | - Pablo Prieto
- Departamento de Ingeniería en Diseño, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (D.B.); (P.P.)
| | - Javier Enrione
- Biopolymer Research and Engineering Lab, Facultad de Medicina, Universidad de Los Andes, Monseñor Álvaro del Portillo 12455, Las Condes, Santiago 7550000, Chile;
| | - Cristian A. Acevedo
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (N.O.); (E.S.)
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile
- Correspondence:
| |
Collapse
|
14
|
Radhika Rajasree SR, Gobalakrishnan M, Aranganathan L, Karthih MG. Fabrication and characterization of chitosan based collagen/ gelatin composite scaffolds from big eye snapper Priacanthus hamrur skin for antimicrobial and anti oxidant applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110270. [PMID: 31761224 DOI: 10.1016/j.msec.2019.110270] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/30/2019] [Accepted: 09/30/2019] [Indexed: 11/28/2022]
Abstract
In this study, for developing a scaffold for tissue engineering from fish processing wastes, a hierachial collagen/gelatin/chitosan novel porous scaffold was fabricated using blends of collagen and gelatin extracted from the skins of Marine big eye snapper Priacanthus humrur. Scaffolds were developed by mechanical spinning of chitosan and by mixing of collagen and gelatin solutions followed by freeze drying and subsequent crosslinking of polymers. The scaffolds were evaluated for rheological properties - porosity, apparent density and swelling capacity to assess their mechanical property.Gelatin/chitosan composition shown very high porosity(81.02%) and incorporation of collagen shown higher density in Collagen/gelatin/chitosan scaffolds (0.0522g/cm3) and collagen/chitosan scaffolds (0.0468 g/cm3).Morphology of the prepared scaffolds were analyzed by Scanning Electron Microscopy which showed reduced pore size of 10 to 20μ in Collagen/gelatin/Chitosan composite, 5 to 10μ in gelatin/chitosan composites and 2-5μ in collagen/chitosan composites. FTIR analysis showed intense peaks ranging 1120 -11267 cm-1 in the three different scaffolds that are denoted as CH groups. In-vitro antioxidant investigation through DPPH assay showed that the composite 3 in 1 mg/ml concentration exhibited higher antioxidant potential (70%). In contrast, ABTS scavenging assay identified composite1 in 1 mg/ml had good antioxidant activity with highest percentage of inhibition (29.5%). The scaffolds were also evaluated for anti microbial properties through disc diffusion assay. The results showed maximum inhibition- 14 mm, 12 mm and 14 mm for 200 μg of the sample for collagen/chitosan, gelatin/chitosan and collagen/gelatin/chitosan scaffolds respectively towards E.Coli and 20 mm, 20 mm and 24 mm towards S.aureus. The zone of inhibition against E. coli and S. aureus for the three scaffolds was comparatively lower and that could be due to the presence of chitosan. The findings of the study indicates that the bioscaffolds are expected to have wide application in tissue engineering.
Collapse
Affiliation(s)
- S R Radhika Rajasree
- Department of Fish Processing Technology, Kerala University of Fisheries and Ocean Studies, Cochin, 682506, Kerala, India.
| | - M Gobalakrishnan
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamilnadu, India
| | - L Aranganathan
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamilnadu, India
| | - M G Karthih
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamilnadu, India
| |
Collapse
|