1
|
Bandara S, Raveendran S. Current Landscape and Future Directions in Cancer Immunotherapy: Therapies, Trials, and Challenges. Cancers (Basel) 2025; 17:821. [PMID: 40075668 PMCID: PMC11899461 DOI: 10.3390/cancers17050821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer remains a leading global health challenge, placing immense burdens on individuals and healthcare systems. Despite advancements in traditional treatments, significant limitations persist, including treatment resistance, severe side effects, and disease recurrence. Immunotherapy has emerged as a promising alternative, leveraging the immune system to target and eliminate tumour cells. However, challenges such as immunotherapy resistance, patient response variability, and the need for improved biomarkers limit its widespread success. This review provides a comprehensive analysis of the current landscape of cancer immunotherapy, highlighting both FDA-approved therapies and novel approaches in clinical development. It explores immune checkpoint inhibitors, cell and gene therapies, monoclonal antibodies, and nanotechnology-driven strategies, offering insights into their mechanisms, efficacy, and limitations. By integrating emerging research and clinical advancements, this review underscores the need for continued innovation to optimise cancer immunotherapy and overcome existing treatment barriers.
Collapse
Affiliation(s)
- Shehani Bandara
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Sreejith Raveendran
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| |
Collapse
|
2
|
Wang X, Zhang M, Li Y, Cong H, Yu B, Shen Y. Research Status of Dendrimer Micelles in Tumor Therapy for Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304006. [PMID: 37635114 DOI: 10.1002/smll.202304006] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/16/2023] [Indexed: 08/29/2023]
Abstract
Dendrimers are a family of polymers with highly branched structure, well-defined composition, and extensive functional groups, which have attracted great attention in biomedical applications. Micelles formed by dendrimers are ideal nanocarriers for delivering anticancer agents due to the explicit study of their characteristics of particle size, charge, and biological properties such as toxicity, blood circulation time, biodistribution, and cellular internalization. Here, the classification, preparation, and structure of dendrimer micelles are reviewed, and the specific functional groups modified on the surface of dendrimers for tumor active targeting, stimuli-responsive drug release, reduced toxicity, and prolonged blood circulation time are discussed. In addition, their applications are summarized as various platforms for biomedical applications related to cancer therapy including drug delivery, gene transfection, nano-contrast for imaging, and combined therapy. Other applications such as tissue engineering and biosensor are also involved. Finally, the possible challenges and perspectives of dendrimer micelles for their further applications are discussed.
Collapse
Affiliation(s)
- Xijie Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of, Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
3
|
Aydin O, Kanarya D, Yilmaz U, Tunç CÜ. Determination of Optimum Ratio of Cationic Polymers and Small Interfering RNA with Agarose Gel Retardation Assay. Methods Mol Biol 2022; 2434:117-128. [PMID: 35213013 PMCID: PMC9703289 DOI: 10.1007/978-1-0716-2010-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanomaterials have aroused attention in the recent years for their high potential for gene delivery applications. Most of the nanoformulations used in gene delivery are positively charged to carry negatively charged oligonucleotides. However, excessive positively charged carriers are cytotoxic. Therefore, the complexed oligonucleotide/nanoparticles should be well-examined before the application. In that manner, agarose gel electrophoresis, which is a basic method utilized for separation, identification, and purification of nucleic acid molecules because of its poriferous nature, is one of the strategies to determine the most efficient complexation rate. When the electric field is applied, RNA fragments can migrate through anode due to the negatively charged phosphate backbone. Because RNA has a uniform mass/charge ratio, RNA molecules run in agarose gel proportional according to their size and molecular weight. In this chapter, the determination of complexation efficiency between cationic polymer carriers and small interfering RNA (siRNA) cargos by using agarose gel electrophoresis is described. siRNA/cationic polymer carrier complexes are placed in an electric field and the charged molecules move through the counter-charged electrodes due to the phenomenon of electrostatic attraction. Nucleic acid cargos are loaded to cationic carriers via the electrostatic interaction between positively charged amine groups (N) of the carrier and negatively charged phosphate groups (P) of RNA. The N/P ratio determines the loading efficiency of the cationic polymer carrier. In here, the determination of N/P ratio, where the most efficient complexation occurs, by exposure to the electric field with a gel retardation assay is explained.
Collapse
Affiliation(s)
- Omer Aydin
- NanoThera Lab, Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey.
- ERNAM - Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey.
- ERKAM - Clinical Engineering and Implementation Center, Erciyes University, Kayseri, Turkey.
| | - Dilek Kanarya
- NanoThera Lab, Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- ERNAM - Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Ummugulsum Yilmaz
- NanoThera Lab, Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
| | - Cansu Ümran Tunç
- NanoThera Lab, Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
| |
Collapse
|
4
|
Apartsin E, Caminade A. Supramolecular Self-Associations of Amphiphilic Dendrons and Their Properties. Chemistry 2021; 27:17976-17998. [PMID: 34713506 PMCID: PMC9298340 DOI: 10.1002/chem.202102589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 12/15/2022]
Abstract
This review presents precisely defined amphiphilic dendrons, their self-association properties, and their different uses. Dendrons, also named dendritic wedges, are composed of a core having two different types of functions, of which one type is used for growing or grafting branched arms, generally multiplied by 2 at each layer by using 1→2 branching motifs. A large diversity of structures has been already synthesized. In practically all cases, their synthesis is based on the synthesis of known dendrimers, such as poly(aryl ether), poly(amidoamine) (in particular PAMAM), poly(amide) (in particular poly(L-lysine)), 1→3 branching motifs (instead of 1→2), poly(alkyl ether) (poly(glycerol) and poly(ethylene glycol)), poly(ester), and those containing main group elements (poly(carbosilane) and poly(phosphorhydrazone)). In most cases, the hydrophilic functions are on the surface of the dendrons, whereas one or two hydrophobic tails are linked to the core. Depending on the structure of the dendrons, and on the experimental conditions used, the amphiphilic dendrons can self-associate at the air-water interface, or form micelles (eventually tubular, but most generally spherical), or form vesicles. These associated dendrons are suitable for the encapsulation of low-molecular or macromolecular bioactive entities to be delivered in cells. This review is organized depending on the nature of the internal structure of the amphiphilic dendrons (aryl ether, amidoamine, amide, quaternary carbon atom, alkyl ether, ester, main group element). The properties issued from their self-associations are described all along the review.
Collapse
Affiliation(s)
- Evgeny Apartsin
- Laboratoire de Chimie de Coordination (LCC) CNRS205 route de Narbonne31077Toulouse cedex 4France
- LCC-CNRSUniversité de Toulouse, CNRS31077Toulouse cedex 4France
- Institute of Chemical Biology and Fundamental Medicine630090NovosibirskRussia
- Novosibirsk State University630090NovosibirskRussia
| | - Anne‐Marie Caminade
- Laboratoire de Chimie de Coordination (LCC) CNRS205 route de Narbonne31077Toulouse cedex 4France
- LCC-CNRSUniversité de Toulouse, CNRS31077Toulouse cedex 4France
| |
Collapse
|
5
|
Laurini E, Aulic S, Marson D, Fermeglia M, Pricl S. Cationic Dendrimers for siRNA Delivery: An Overview of Methods for In Vitro/In Vivo Characterization. Methods Mol Biol 2021; 2282:209-244. [PMID: 33928579 DOI: 10.1007/978-1-0716-1298-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This chapter reviews the different techniques for analyzing the chemical-physical properties, transfection efficiency, cytotoxicity, and stability of covalent cationic dendrimers (CCDs) and self-assembled cationic dendrons (ACDs) for siRNA delivery in the presence and absence of their nucleic cargos. On the basis of the reported examples, a standard essential set of techniques is described for each step of a siRNA/nanovector (NV) complex characterization process: (1) analysis of the basic chemical-physical properties of the NV per se; (2) characterization of the morphology, size, strength, and stability of the siRNA/NV ensemble; (3) characterization and quantification of the cellular uptake and release of the siRNA fragment; (4) in vitro and (5) in vivo experiments for the evaluation of the corresponding gene silencing activity; and (6) assessment of the intrinsic toxicity of the NV and the siRNA/NV complex.
Collapse
Affiliation(s)
- Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy.
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
ITC for Characterization of Self-Assembly Process of Cationic Dendrons for siRNA Delivery. Methods Mol Biol 2021; 2282:245-266. [PMID: 33928580 DOI: 10.1007/978-1-0716-1298-9_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
siRNAs are emerging as promising therapeutic agents due to their ability to inhibit specific genes in many diseases. However, these tools require specific vehicles in order to be safely delivered to the targeted site. Among different siRNA delivery systems, self-assembled nanomicelles based on amphiphilic cationic dendrons (ACDs) have recently outperformed nanovectors based on covalent carriers. This chapter describes how isothermal titration calorimetry (ITC) can be exploited as one of the best techniques to investigate the self-assembly process of ACDs. Specifically, ITC can provide, as such or via specific analysis methods, a full thermodynamic characterization of these nanomicelles, including their critical micellar concentration, micelle aggregation number, degree of counterion binding, Gibbs free energy of micellization, and its enthalpic and entropic components.
Collapse
|
7
|
Marson D, Laurini E, Aulic S, Fermeglia M, Pricl S. Perceptions and Misconceptions in Molecular Recognition: Key Factors in Self-Assembling Multivalent (SAMul) Ligands/Polyanions Selectivity. Molecules 2020; 25:molecules25041003. [PMID: 32102359 PMCID: PMC7070608 DOI: 10.3390/molecules25041003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/02/2023] Open
Abstract
Biology is dominated by polyanions (cell membranes, nucleic acids, and polysaccharides just to name a few), and achieving selective recognition between biological polyanions and synthetic systems currently constitutes a major challenge in many biomedical applications, nanovectors-assisted gene delivery being a prime example. This review work summarizes some of our recent efforts in this field; in particular, by using a combined experimental/computation approach, we investigated in detail some critical aspects in self-assembled nanomicelles and two major polyanions—DNA and heparin.
Collapse
Affiliation(s)
- Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy; (D.M.); (S.A.); (M.F.); (S.P.)
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy; (D.M.); (S.A.); (M.F.); (S.P.)
- Correspondence: ; Tel.: +39-040-558-3432
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy; (D.M.); (S.A.); (M.F.); (S.P.)
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy; (D.M.); (S.A.); (M.F.); (S.P.)
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy; (D.M.); (S.A.); (M.F.); (S.P.)
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
8
|
Lamberti G, Barba AA. Drug Delivery of siRNA Therapeutics. Pharmaceutics 2020; 12:pharmaceutics12020178. [PMID: 32093141 PMCID: PMC7076510 DOI: 10.3390/pharmaceutics12020178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Gaetano Lamberti
- Eng4Life Srl, Spin-off Accademico, Via Fiorentino, 32, 83100 Avellino, Italy;
- Dipartimento di Ingegneria Industriale; Università degli Studi di Salerno, via Giovanni Paolo II, 132 84084 Fisciano (SA), Italy
| | - Anna Angela Barba
- Eng4Life Srl, Spin-off Accademico, Via Fiorentino, 32, 83100 Avellino, Italy;
- Dipartimento di Farmacia; Università degli Studi di Salerno, via Giovanni Paolo II, 132 84084 Fisciano (SA), Italy
- Correspondence:
| |
Collapse
|
9
|
Le NTT, Nguyen TNQ, Cao VD, Hoang DT, Ngo VC, Hoang Thi TT. Recent Progress and Advances of Multi-Stimuli-Responsive Dendrimers in Drug Delivery for Cancer Treatment. Pharmaceutics 2019; 11:E591. [PMID: 31717376 PMCID: PMC6920789 DOI: 10.3390/pharmaceutics11110591] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022] Open
Abstract
Despite the fact that nanocarriers as drug delivery systems overcome the limitation of chemotherapy, the leakage of encapsulated drugs during the delivery process to the target site can still cause toxic effects to healthy cells in other tissues and organs in the body. Controlling drug release at the target site, responding to stimuli that originated from internal changes within the body, as well as stimuli manipulated by external sources has recently received significant attention. Owning to the spherical shape and porous structure, dendrimer is utilized as a material for drug delivery. Moreover, the surface region of dendrimer has various moieties facilitating the surface functionalization to develop the desired material. Therefore, multi-stimuli-responsive dendrimers or 'smart' dendrimers that respond to more than two stimuli will be an inspired attempt to achieve the site-specific release and reduce as much as possible the side effects of the drug. The aim of this review was to delve much deeper into the recent progress of multi-stimuli-responsive dendrimers in the delivery of anticancer drugs in addition to the major potential challenges.
Collapse
Affiliation(s)
- Ngoc Thuy Trang Le
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam;
| | - Thi Nhu Quynh Nguyen
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam; (T.N.Q.N.); (V.D.C.); (D.T.H.); (V.C.N.)
| | - Van Du Cao
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam; (T.N.Q.N.); (V.D.C.); (D.T.H.); (V.C.N.)
| | - Duc Thuan Hoang
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam; (T.N.Q.N.); (V.D.C.); (D.T.H.); (V.C.N.)
| | - Van Cuong Ngo
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam; (T.N.Q.N.); (V.D.C.); (D.T.H.); (V.C.N.)
| | - Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
10
|
Marson D, Laurini E, Aulic S, Fermeglia M, Pricl S. Unchain My Blood: Lessons Learned from Self-Assembled Dendrimers as Nanoscale Heparin Binders. Biomolecules 2019; 9:E385. [PMID: 31434309 PMCID: PMC6723693 DOI: 10.3390/biom9080385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Abstract
This review work reports a collection of coupled experimental/computational results taken from our own experience in the field of self-assembled dendrimers for heparin binding. These studies present and discuss both the potentiality played by this hybrid methodology to the design, synthesis, and development of possible protamine replacers for heparin anticoagulant activity reversal in biomedical applications, and the obstacles this field has still to overcome before these molecules can be translated into nanomedicines available in clinical settings.
Collapse
Affiliation(s)
- Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy.
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|