1
|
Valor D, García-Casas I, Montes A, Danese E, Pereyra C, de la Ossa EM. Supercritical Impregnation of Mangifera indica Leaves Extracts into Porous Conductive PLGA-PEDOT Scaffolds. Polymers (Basel) 2023; 16:133. [PMID: 38201798 PMCID: PMC10780670 DOI: 10.3390/polym16010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Plant leaves, such as those from Mangifera indica, represent a potential utilization of waste due to their richness in bioactive compounds. Supercritical CO2 allows these compounds to be incorporated into various matrices by impregnation. Combined with its ability to generate polymeric scaffolds, it represents an attractive strategy for the production of biomedical devices. For this purpose, conjugated polymeric scaffolds of biodegradable PLGA (poly(lactic-co-glycolic acid)) and PEDOT:PSS (poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)), generated in situ by foaming, were employed for the supercritical impregnation of ethanolic mango leaves extract (MLE) in tissue engineering as a potential application. The extraction of MLE was performed by Enhanced Solvent Extraction. The effects of pressure (120-300 bar), temperature (35-55 °C), and depressurization rate (1-50 bar/min) on the physical/conductive properties and the impregnation of MLE were studied. The scaffolds have been characterized by liquid displacement, scanning electron microscope, resistance to conductivity techniques, measurements of impregnated load, antioxidant capacity and antimicrobial activity. Porosity values ranging 9-46% and conductivity values between 10-4-10-5 S/cm were obtained. High pressures, low temperatures and rapid depressurization favored the impregnation of bioactive compounds. Scaffolds with remarkable antioxidant activity were obtained (75.2-87.3% oxidation inhibition), demonstrating the ability to inhibit S. aureus bacterial growth (60.1 to 71.4%).
Collapse
Affiliation(s)
- Diego Valor
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, International Excellence Agrifood Campus (CeiA3), University of Cádiz, 11510 Puerto Real, Spain; (D.V.); (I.G.-C.); (C.P.); (E.M.d.l.O.)
| | - Ignacio García-Casas
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, International Excellence Agrifood Campus (CeiA3), University of Cádiz, 11510 Puerto Real, Spain; (D.V.); (I.G.-C.); (C.P.); (E.M.d.l.O.)
| | - Antonio Montes
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, International Excellence Agrifood Campus (CeiA3), University of Cádiz, 11510 Puerto Real, Spain; (D.V.); (I.G.-C.); (C.P.); (E.M.d.l.O.)
| | - Ella Danese
- Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia;
| | - Clara Pereyra
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, International Excellence Agrifood Campus (CeiA3), University of Cádiz, 11510 Puerto Real, Spain; (D.V.); (I.G.-C.); (C.P.); (E.M.d.l.O.)
| | - Enrique Martínez de la Ossa
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, International Excellence Agrifood Campus (CeiA3), University of Cádiz, 11510 Puerto Real, Spain; (D.V.); (I.G.-C.); (C.P.); (E.M.d.l.O.)
| |
Collapse
|
2
|
Pino P, Pellegrino G, Ronchetti S, Mollea C, Bosco F, Onida B. Antibacterial β-Glucan/Zinc Oxide Nanocomposite Films for Wound Healing. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
AbstractAdvanced antimicrobial biomaterials for wound healing applications are an active field of research for their potential in addressing severe and infected wounds and overcoming the threat of antimicrobial resistance. Beta-glucans have been used in the preparation of these materials for their bioactive properties, but very little progress has been made so far in producing biomedical devices entirely made of beta-glucans and in their integration with effective antimicrobial agents. In this work, a simple and eco-friendly method is used to produce flexible beta-glucan/nanostructured zinc oxide films, using glucans derived from the yeast Saccharomyces cerevisiae. The properties of the films are characterized through scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, infrared and UV–visible spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and water absorption tests. Finally, the antibacterial properties of the nanostructured zinc oxide and of the composite films are assessed against Staphylococcus epidermidis and Escherichia coli, showing a marked effectiveness against the former. Overall, this study demonstrates how a novel bionanocomposite can be obtained towards the development of advanced wound healing devices.
Collapse
|
3
|
Nemati A, Rezaei H, Poturcu K, Hanaee J, Jouyban A, Zhao H, Rahimpour E. Effect of temperature and propylene glycol as a cosolvent on dissolution of clotrimazole. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:258-266. [PMID: 36252866 DOI: 10.1016/j.pharma.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Herein, the solubility study of clotrimazole was performed in a propylene glycol+water system. The solubility values were fitted to various cosolvency equations. The model accuracies were studied with the computation of the mean relative deviations. The thermodynamic behavior was investigated according to the van't Hoff and Gibbs equations for clotrimazole in the propylene glycol+water system. Furthermore, the density data for clotrimazole were determined in mixtures of propylene glycol+water and fitted to the Jouyban-Acree equation.
Collapse
Affiliation(s)
- A Nemati
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H Rezaei
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - K Poturcu
- Department of Chemistry, Arts and Science Faculty, Suleyman Demirel University, Isparta, Turkey
| | - J Hanaee
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - A Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Near East University, PO BOX: 99138 Nicosia, North Cyprus, Mersin 10, Turkey
| | - H Zhao
- College of Chemistry & Chemical Engineering, YangZhou University, YangZhou, 225002 Jiangsu, PR China
| | - E Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 5165665811 Tabriz, Iran.
| |
Collapse
|
4
|
Supercritical solvent impregnation of sodium valproate nanoparticles on polymers: Characterization and optimization of the operational parameters. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Supercritical Fluid Extraction from Zataria multiflora Boiss and Impregnation of Bioactive Compounds in PLA for the Development of Materials with Antibacterial Properties. Processes (Basel) 2022. [DOI: 10.3390/pr10091787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In this research, the extraction with supercritical carbon dioxide (SC-CO2) and the subsequent impregnation of the extracted bioactive compounds from Zataria multiflora Boiss (Z. multiflora) into polylactic acid (PLA) films was investigated. The effects of temperature (318 and 338 K), pressure (15 and 25 MPa) and cosolvent presence (0 and 3 mol%) on the extraction yield were studied. The SC-CO2 assisted impregnation runs were carried out in a discontinuous mode at different pressure (15 and 25 MPa), temperature (318 and 328 K), and time (2 and 8 h) values, using 0.5 MPa min−1 as a constant value of depressurization rate. ANOVA results confirmed that pressure, temperature, and time influenced the extraction yield. Moreover, antioxidant activities of extracts of Z. multiflora were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays. In addition, the antibacterial activities of the extracts were screened against standard strains of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The results of this investigation indicated that extracts obtained from the aerial parts of Z. multiflora possessed antioxidant and antibacterial properties. The impregnated samples presented strong antibacterial activity against the selected microorganisms.
Collapse
|
6
|
Guamán-Balcázar MDC, Montes A, Valor D, Coronel Y, De los Santos DM, Pereyra C, Martínez de la Ossa EJ. Inclusion of Natural Antioxidants of Mango Leaves in Porous Ceramic Matrices by Supercritical CO 2 Impregnation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5934. [PMID: 36079317 PMCID: PMC9457324 DOI: 10.3390/ma15175934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Mango is one of the most important, medicinal tropical plants in the world from an economic point of view due to the presence of effective bioactive substances as co-products in its leaves. The aim of this work was to enhance the impregnation of natural antioxidants from mango leaves into a porous ceramic matrix. The effects of pressure, temperature, impregnation time, concentration of the extract and different porous silica on impregnation of phenolic compounds and antioxidant activity were analyzed. The volume of the pressurized fluid extract and amount of porous ceramic matrix remained constant. The best impregnation conditions were obtained at 6 h, 300 bar, 60 mg/mL, 35 °C and with MSU-H porous silica. The results indicated that increasing the pressure, concentration of the extract and temperature during impregnation with phenolic compounds such as gallic acid and iriflophenone 3-C (2-O-p-hydroxybenzolyl)-β-D-glucoside increased the antioxidant activity and the amount of total phenols.
Collapse
Affiliation(s)
- María del Cisne Guamán-Balcázar
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cádiz, International Excellence Agrifood Campus (CeiA3), 11510 Puerto Real, Spain
- Departamento de Química, Universidad Técnica Particular de Loja, San Cayetano Alto sn, AP, Loja 1101608, Ecuador
| | - Antonio Montes
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cádiz, International Excellence Agrifood Campus (CeiA3), 11510 Puerto Real, Spain
| | - Diego Valor
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cádiz, International Excellence Agrifood Campus (CeiA3), 11510 Puerto Real, Spain
| | - Yorky Coronel
- Departamento de Química, Universidad Técnica Particular de Loja, San Cayetano Alto sn, AP, Loja 1101608, Ecuador
| | - Desireé M. De los Santos
- Department of Physical Chemistry, Faculty of Sciences, University of Cádiz, International Excellence Agrifood Campus (CeiA3), 11510 Puerto Real, Spain
| | - Clara Pereyra
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cádiz, International Excellence Agrifood Campus (CeiA3), 11510 Puerto Real, Spain
| | - Enrique J. Martínez de la Ossa
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cádiz, International Excellence Agrifood Campus (CeiA3), 11510 Puerto Real, Spain
| |
Collapse
|
7
|
Supercritical Fluid Technologies for the Incorporation of Synthetic and Natural Active Compounds into Materials for Drug Formulation and Delivery. Pharmaceutics 2022; 14:pharmaceutics14081670. [PMID: 36015296 PMCID: PMC9413081 DOI: 10.3390/pharmaceutics14081670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/25/2022] Open
Abstract
Various active compounds isolated from natural sources exhibit remarkable benefits, making them attractive for pharmaceutical and biomedical applications, such as antioxidant, antimicrobial, and anti-inflammatory activities, which contribute to the treatment of cardiovascular diseases, neurodegenerative disorders, various types of cancer, diabetes, and obesity. However, their major drawbacks are their reactivity, instability, relatively poor water solubility, and consequently low bioavailability. Synthetic drugs often face similar challenges associated with inadequate solubility or burst release in gastrointestinal media, despite being otherwise a safe and effective option for the treatment of numerous diseases. Therefore, drug-eluting pharmaceutical formulations have been of great importance over the years in efforts to improve the bioavailability of active compounds by increasing their solubility and achieving their controlled release in body media. This review highlights the success of the fabrication of micro- and nanoformulations using environmentally friendly supercritical fluid technologies for the processing and incorporation of active compounds. Several novel approaches, namely micronization to produce micro- and nano-sized particles, supercritical drying to produce aerogels, supercritical foaming, and supercritical solvent impregnation, are described in detail, along with the currently available drug delivery data for these formulations.
Collapse
|
8
|
Valor D, Montes A, García-Casas I, Pereyra C, Martínez de la Ossa E. Supercritical solvent impregnation of alginate wound dressings with mango leaves extract. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Pino P, Ronchetti S, Mollea C, Sangermano M, Onida B, Bosco F. Whey Proteins-Zinc Oxide Bionanocomposite as Antibacterial Films. Pharmaceutics 2021; 13:1426. [PMID: 34575502 PMCID: PMC8466345 DOI: 10.3390/pharmaceutics13091426] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 11/23/2022] Open
Abstract
The use of toxic crosslinking agents and reagents in the fabrication of hydrogels is a frequent issue which is particularly concerning for biomedical or food packaging applications. In this study, novel antibacterial bionanocomposite films were obtained through a simple solvent casting technique without using any crosslinking substance. Films were made from a flexible and transparent whey protein matrix containing zinc oxide nanoparticles synthesised via a wet chemical precipitation route. The physicochemical and functional properties of the ZnO nanoparticles and of the composite films were characterised, and their antibacterial activity was tested against S. epidermidis and E. coli. The synthesised ZnO nanoparticles had an average size of about 30 nm and a specific surface area of 49.5 m2/g. The swelling ratio of the bionanocomposite films increased at basic pH, which is an appealing feature in relation to the absorption of chronic wound exudate. A n-ZnO concentration-dependent antibacterial effect was observed for composite films. In particular, marked antibacterial activity was observed against S. epidermidis. Overall, these findings suggest that this novel material can be a promising and sustainable alternative in the design of advanced solutions for wound dressing or food packaging.
Collapse
Affiliation(s)
| | | | | | | | - Barbara Onida
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (P.P.); (S.R.); (C.M.); (M.S.); (F.B.)
| | | |
Collapse
|
10
|
Meneses L, Craveiro R, Jesus AR, Reis MAM, Freitas F, Paiva A. Supercritical CO 2 Assisted Impregnation of Ibuprofen on Medium-Chain-Length Polyhydroxyalkanoates (mcl-PHA). Molecules 2021; 26:4772. [PMID: 34443357 PMCID: PMC8400196 DOI: 10.3390/molecules26164772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022] Open
Abstract
In this work, we propose the utilization of scCO2 to impregnate ibuprofen into the mcl-PHA matrix produced by Pseudomonas chlororaphis subs. aurantiaca (DSM 19603). The biopolymer has adhesive properties, is biocompatible and has a melting temperature of 45 °C. Several conditions, namely, pressure (15 and 20 MPa) and impregnation time (30 min, 1 h and 3 h) were tested. The highest ibuprofen content (90.8 ± 6.5 mg of ibuprofen/gPHA) was obtained at 20 MPa and 40 °C, for 1 h, with an impregnation rate of 89 mg/(g·h). The processed mcl-PHA samples suffered a plasticization, as shown by the decrease of 6.5 °C in the Tg, at 20 MPa. The polymer's crystallinity was also affected concomitantly with the matrices' ibuprofen content. For all the impregnation conditions tested the release of ibuprofen from the biopolymer followed a type II release profile. This study has demonstrated that the mcl-PHA produced by P. chlororaphis has a great potential for the development of novel topical drug delivery systems.
Collapse
Affiliation(s)
- Liane Meneses
- LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2825-149 Caparica, Portugal; (L.M.); (R.C.); (A.R.J.); (A.P.)
| | - Rita Craveiro
- LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2825-149 Caparica, Portugal; (L.M.); (R.C.); (A.R.J.); (A.P.)
| | - Ana Rita Jesus
- LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2825-149 Caparica, Portugal; (L.M.); (R.C.); (A.R.J.); (A.P.)
| | - Maria A. M. Reis
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2815-149 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
| | - Filomena Freitas
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2815-149 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
| | - Alexandre Paiva
- LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2825-149 Caparica, Portugal; (L.M.); (R.C.); (A.R.J.); (A.P.)
| |
Collapse
|
11
|
Gallo M, Serpella L, Leone F, Manna L, Banchero M, Ronchetti S, Onida B. Piroxicam Loading onto Mesoporous Silicas by Supercritical CO 2 Impregnation. Molecules 2021; 26:molecules26092500. [PMID: 33922927 PMCID: PMC8123285 DOI: 10.3390/molecules26092500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
Piroxicam (PRX) is a commonly prescribed nonsteroidal anti-inflammatory drug. Its efficacy, however, is partially limited by its low water solubility. In recent years, different studies have tackled this problem and have suggested delivering PRX through solid dispersions. All these strategies, however, involve the use of potentially harmful solvents for the loading procedure. Since piroxicam is soluble in supercritical CO2 (scCO2), the present study aims, for the first time, to adsorb PRX onto mesoporous silica using scCO2, which is known to be a safer and greener technique compared to the organic solvent-based ones. For comparison, PRX is also loaded by adsorption from solution and incipient wetness impregnation using ethanol as solvent. Two different commercial mesoporous silicas are used (SBA-15 and Grace Syloid® XDP), which differ in porosity order and surface silanol population. Physico-chemical analyses show that the most promising results are obtained through scCO2, which yields the amorphization of PRX, whereas some crystallization occurs in the case of adsorption from solution and IWI. The highest loading of PRX by scCO2 is obtained in SBA-15 (15 wt.%), where molecule distribution appears homogeneous, with very limited pore blocking.
Collapse
|
12
|
Wojnarowicz J, Chudoba T, Lojkowski W. A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants, Process Parameters and Morphoslogies. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1086. [PMID: 32486522 PMCID: PMC7353225 DOI: 10.3390/nano10061086] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022]
Abstract
Zinc oxide (ZnO) is a multifunctional material due to its exceptional physicochemical properties and broad usefulness. The special properties resulting from the reduction of the material size from the macro scale to the nano scale has made the application of ZnO nanomaterials (ZnO NMs) more popular in numerous consumer products. In recent years, particular attention has been drawn to the development of various methods of ZnO NMs synthesis, which above all meet the requirements of the green chemistry approach. The application of the microwave heating technology when obtaining ZnO NMs enables the development of new methods of syntheses, which are characterised by, among others, the possibility to control the properties, repeatability, reproducibility, short synthesis duration, low price, purity, and fulfilment of the eco-friendly approach criterion. The dynamic development of materials engineering is the reason why it is necessary to obtain ZnO NMs with strictly defined properties. The present review aims to discuss the state of the art regarding the microwave synthesis of undoped and doped ZnO NMs. The first part of the review presents the properties of ZnO and new applications of ZnO NMs. Subsequently, the properties of microwave heating are discussed and compared with conventional heating and areas of application are presented. The final part of the paper presents reactants, parameters of processes, and the morphology of products, with a division of the microwave synthesis of ZnO NMs into three primary groups, namely hydrothermal, solvothermal, and hybrid methods.
Collapse
Affiliation(s)
- Jacek Wojnarowicz
- Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (T.C.); (W.L.)
| | | | | |
Collapse
|