1
|
Shah T, Polara H, Babanyinah G, Bhadran A, Wang H, Castillo CC, Grabowski G, Biewer MC, Torabifard H, Stefan MC. Computational design to experimental validation: molecular dynamics-assisted development of polycaprolactone micelles for drug delivery. J Mater Chem B 2025; 13:4166-4178. [PMID: 40047718 DOI: 10.1039/d4tb02789b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Amphiphilic diblock copolymers are used in drug delivery systems for cancer treatments. However, these carriers suffer from lower drug loading capacity, poor water solubility, and non-targeted drug release. Here, we utilized a computational approach to analyze the effect of the functional groups of the hydrophobic block on the drug-polymer interactions. To design effective drug carriers, four different amphiphilic block copolymer micelles with distinct aromatic and heteroaromatic groups at the hydrophobic core were subjected to molecular dynamics simulations. The solvent-accessible surface area, water shell, hydrogen bonding, and radius of gyration of the simulated micelles were determined. Further, we assessed the interactions between the hydrophobic block and drug molecules using linear interaction energy and non-covalent interactions. The computational studies revealed that the micelles containing a novel poly(γ-2-methoxyfuran-ε-caprolactone) (PFuCL) hydrophobic block have the highest polymer-drug interactions. From these findings, we synthesized a novel amphiphilic poly(ethylene glycol)-b-poly(γ-2-methoxyfuran(ε-caprolactone)) (PEG-b-PFuCL) block copolymer using ring-opening polymerization of FuCL monomer. The polymer was self-assembled in aqueous media to form micelles. The aromatic segment of PEG-b-PFuCL micelles enhanced the doxorubicin (DOX) loading through non-covalent interactions, resulting in a 4.25 wt% drug-loading capacity. We also showed that the hydrolysis of the ester bond allowed a faster in vitro drug release at pH 5.0 compared to pH 7.4. Cell viability experiments revealed that DOX-loaded PEG-b-PFuCL micelles show that micelles are cytotoxic and readily uptaken into MDA-MB-231 cells. Therefore, furan-substituted micelles will be an ideal drug carrier with higher polymer-to-drug interactions, enhanced drug loading, and lower premature leakage.
Collapse
Affiliation(s)
- Tejas Shah
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Himanshu Polara
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Godwin Babanyinah
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Abhi Bhadran
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Hanghang Wang
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Cristina Cu Castillo
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Gerik Grabowski
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Hedieh Torabifard
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
2
|
Bhat B, Pahari S, Kwon JSI, Akbulut MES. Stimuli-responsive viscosity modifiers. Adv Colloid Interface Sci 2023; 321:103025. [PMID: 37871381 DOI: 10.1016/j.cis.2023.103025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/01/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Stimuli responsive viscosity modifiers entail an important class of materials which allow for smart material formation utilizing various stimuli for switching such as pH, temperature, light and salinity. They have seen applications in the biomedical space including tissue engineering and drug delivery, wherein stimuli responsive hydrogels and polymeric vessels have been extensively applied. Applications have also been seen in other domains like the energy sector and automobile industry, in technologies such as enhanced oil recovery. The chemistry and microstructural arrangements of the aqueous morphologies of dissolved materials are usually sensitive to the aforementioned stimuli which subsequently results in rheological sensitivity as well. Herein, we overview different structures capable of viscosity modification as well as go over the rheological theory associated with classical systems studied in literature. A detailed analysis allows us to explore correlations between commonly discussed models such as molecular packing parameter, tube reptation and stress relaxation with structural and rheological changes. We then present five primary mechanisms corresponding to stimuli responsive viscosity modification: (i) packing parameter modification via functional group conditioning and (ii) via dynamic bond formation, (iii) mesh formation by interlinking of network nodes, (iv) viscosity modification by chain conformation changes and (v) viscosity modification by particle jamming. We also overview several recent examples from literature that employ the concepts discussed to create novel classes of intriguing stimuli responsive structures and their corresponding rheological properties. Furthermore, we also explore systems that are responsive to multiple stimuli which can provide enhanced functionality and versatility by providing multi-level and precise actuation. Such systems have been used for programmed site-specific drug delivery.
Collapse
Affiliation(s)
- Bhargavi Bhat
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Silabrata Pahari
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Joseph Sang-Il Kwon
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; Texas A&M Energy Institute, College Station, TX 77843, USA
| | - Mustafa E S Akbulut
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA; Texas A&M Energy Institute, College Station, TX 77843, USA.
| |
Collapse
|
3
|
Lin W, Zhang J, Zhang F, Wu W, Chen F, Zhang Z, Lin X, Yang C, Yi G. Mesoscopic Simulations of Diselenide-Containing Crosslinked Doxorubicin-Loaded Micelles and Their Tumor Microenvironment Responsive Release Behaviors. J Pharm Sci 2022; 112:1388-1400. [PMID: 36566929 DOI: 10.1016/j.xphs.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
There is currently limited research on the structure-property relationship of reduction stimuli-responsive polymeric crosslinked micelles using mesoscopic simulations. Herein, dissipative particle dynamics (DPD) simulations were used to simulate the self-assembly process of the blank non-crosslinked micelle, the structure and doxorubicin (DOX) distribution of diselenide crosslinked micelle with different crosslinker contents (CCs) based on the nearest-neighbor bonding principle. The results revealed that the formation of a three-layer spherical micelle and the loaded DOX mainly distributed in the polycaprolactone (PCL) core and hydroxyethyl methacrylate (HEMA) mesosphere. The larger the dosage of DOX, the more DOX encapsulated, but the encapsulation of DOX in the hydrophobic domain would reach saturation when the dosage increased to 6.0 %. In micelles with lower CCs or crosslinking levels (CLs), DOX entered the middle layer and the inner core faster. Then, based on the nearest media-bead bond breaking principle and subsequently DPD simulation, the effects of different CCs on the micelle structure and DOX release properties were investigated. Low CC could cause fast drug release. With the increase of CCs, the micelle showed a slower DOX release trend. The multilayer crosslinked network system also affected the DOX release rate. Hence, this work can provide some mesoscale guidance for the structural design and structure-property relationship of stimuli-responsive reversible crosslinked micelles for drug delivery.
Collapse
Affiliation(s)
- Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Jieheng Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Fusheng Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Wensheng Wu
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, PR China
| | - Feihua Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zikang Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Chufen Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Guobin Yi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
4
|
Grigoreva A, Tarankova K, Zamyshlyayeva O, Zaitsev S. Aggregation behaviour of poly(fluoro(meth)acrylate)-block-poly(acrylic acid) copolymers at the air /water interface. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02629-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Bunker A, Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front Mol Biosci 2020; 7:604770. [PMID: 33330633 PMCID: PMC7732618 DOI: 10.3389/fmolb.2020.604770] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we outline the growing role that molecular dynamics simulation is able to play as a design tool in drug delivery. We cover both the pharmaceutical and computational backgrounds, in a pedagogical fashion, as this review is designed to be equally accessible to pharmaceutical researchers interested in what this new computational tool is capable of and experts in molecular modeling who wish to pursue pharmaceutical applications as a context for their research. The field has become too broad for us to concisely describe all work that has been carried out; many comprehensive reviews on subtopics of this area are cited. We discuss the insight molecular dynamics modeling has provided in dissolution and solubility, however, the majority of the discussion is focused on nanomedicine: the development of nanoscale drug delivery vehicles. Here we focus on three areas where molecular dynamics modeling has had a particularly strong impact: (1) behavior in the bloodstream and protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle interaction with both model and biological membranes. We conclude with some thoughts on the role that molecular dynamics simulation can grow to play in the development of new drug delivery systems.
Collapse
Affiliation(s)
- Alex Bunker
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Lin X, Miao L, Wang X, Tian H. Design and evaluation of pH-responsive hydrogel for oral delivery of amifostine and study on its radioprotective effects. Colloids Surf B Biointerfaces 2020; 195:111200. [PMID: 32623053 DOI: 10.1016/j.colsurfb.2020.111200] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 01/24/2023]
Abstract
The purpose of this study was to develop a novel pH-sensitive hydrogel which was used to regulate the acute radiation syndrome (ARS). The hydrogel was fabricated by grafting polycaprolactone onto methacrylic acid copolymer (MAC-g-PCL). Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H NMR) confirmed the obtaining of MAC-g-PCL hydrogel. The hydrogel was pH-sensitive, at pH 1.2, it was compact hydrogel, but at pH7.4, it was dissolved solution. Its inner 3D morphology was observed by scanning electron microscope (SEM). Cell experiments indicated that the MAC-g-PCL hyrogel was out of cytotoxicity. The release profile of amifostine showed that small amount drug release in simulated gastric fluid (pH 1.2) and burst release in simulated intestinal fluid (pH 7.4). Thus, the pH-sensitive hydrogels could protect amifostine from enzymatic degradation in acidic stomach and deliver effectively in the intestine. The radioprotective efficacy was determined by peripheral complete blood parameters and 30-day survival study in mice acutely exposed to 4 Gy γ-ray total body irradiation. Results suggested that oral administration MAC-g-PCL/Ami before total body irradiation protected the mice from hematopoietic ARS and enhanced their survival. Furthermore, in vivo bio-distribution studies indicated that the drug could be sustained delivered at intestinal tract and entered the bloodstream. These results demonstrated that oral administration of amifostine hydrogel provided effective radioprotection to reduce the ARS injury.
Collapse
Affiliation(s)
- Xiaona Lin
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Longfei Miao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xinxin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hongqi Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| |
Collapse
|
7
|
Yang C, Liu W, Xiao J, Yuan C, Chen Y, Guo J, Yue H, Zhu D, Lin W, Tang S, Dong X. pH-Sensitive Mixed Micelles Assembled from PDEAEMA-PPEGMA and PCL-PPEGMA for Doxorubicin Delivery: Experimental and DPD Simulations Study. Pharmaceutics 2020; 12:E170. [PMID: 32085488 PMCID: PMC7076365 DOI: 10.3390/pharmaceutics12020170] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 11/17/2022] Open
Abstract
To decrease critical micelle concentration (CMC), improve stability, and keep high drug-loading capacity, three pH-sensitive mixed micelles applied for anticancer drug controlled delivery were prepared by the mixture of polymers poly (N,N-diethylaminoethyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) (PDEAEMA-PPEGMA) and polycaprolactone-b-poly (poly(ethylene glycol) methyl ether methacrylate) (PCL-PPEGMA), which were synthesized and confirmed by 1H NMR and gel permeation chromatographic (GPC). The critical micelle concentration (CMC) values of the prepared mixed micelles were low, and the micellar sizes and zeta potentials of the blank mixed micelles demonstrated good pH-responsive behavior. Combined experimental techniques with dissipative particle dynamics (DPD) simulation, the particle sizes, zeta potentials, drug loading content (LC), encapsulation efficiency (EE), aggregation morphologies, and doxorubicin (DOX) distribution of the mixed micelles were investigated, and the high DOX-loading capacity of the mixed micelles was found. Both in vitro DOX release profiles and DPD simulations of the DOX dynamics release process exhibited less leakage and good stability in neutral conditions and accelerated drug release behavior with a little initial burst in slightly acidic conditions. Cytotoxicity tests showed that the polymer PDEAEMA-PPEGMA and the blank mixed micelles had good biocompatibility, and DOX-loaded mixed micelles revealed certain cytotoxicity. These results suggest that the drug-loaded mixed micelles that consisted of the two polymers PDEAEMA-PPEGMA and PCL-PPEGMA can be new types of pH-responsive well-controlled release anticancer drug delivery mixed micelles.
Collapse
Affiliation(s)
- Chufen Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (C.Y.); (W.L.); (J.X.); (C.Y.); (Y.C.); (J.G.); (H.Y.); (D.Z.)
| | - Wenyao Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (C.Y.); (W.L.); (J.X.); (C.Y.); (Y.C.); (J.G.); (H.Y.); (D.Z.)
| | - Jiayu Xiao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (C.Y.); (W.L.); (J.X.); (C.Y.); (Y.C.); (J.G.); (H.Y.); (D.Z.)
| | - Cong Yuan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (C.Y.); (W.L.); (J.X.); (C.Y.); (Y.C.); (J.G.); (H.Y.); (D.Z.)
| | - Yaoxi Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (C.Y.); (W.L.); (J.X.); (C.Y.); (Y.C.); (J.G.); (H.Y.); (D.Z.)
| | - Jianwei Guo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (C.Y.); (W.L.); (J.X.); (C.Y.); (Y.C.); (J.G.); (H.Y.); (D.Z.)
| | - Hangbo Yue
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (C.Y.); (W.L.); (J.X.); (C.Y.); (Y.C.); (J.G.); (H.Y.); (D.Z.)
| | - Dongyu Zhu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (C.Y.); (W.L.); (J.X.); (C.Y.); (Y.C.); (J.G.); (H.Y.); (D.Z.)
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (C.Y.); (W.L.); (J.X.); (C.Y.); (Y.C.); (J.G.); (H.Y.); (D.Z.)
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shengqiu Tang
- College of Yingdong Agricultural Science and Engineering, Shaoguan University, Shaoguan 512005, China;
| | - Xiaoying Dong
- College of Yingdong Agricultural Science and Engineering, Shaoguan University, Shaoguan 512005, China;
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Guo Y, Karimi F, Fu Q, G Qiao G, Zhang H. Reduced administration frequency for the treatment of fungal keratitis: a sustained natamycin release from a micellar solution. Expert Opin Drug Deliv 2020; 17:407-421. [PMID: 32009483 DOI: 10.1080/17425247.2020.1719995] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background: Natamycin is the only topical ophthalmic antifungal drug approved by the Food and Drug Administration (FDA) of the United States, but has unsatisfactory factors such as high dosing frequency.Methods: We report the synthesis and preparation of self-assembled poly(ethylene glycol)-block-poly(glycidyl methacrylate) (PEG-b-PGMA) micelles. These nanoparticles exhibit sustained delivery of a hydrophobic natamycin by topical administration on eye due to the hydrolysable properties of PGMA segments of micelle. Hydrolysis of glycidyl groups within a physiologically relevant environment provides an additional driving force for drug release by generation of hydrophilic hydroxyl groups to 'push' the encapsulated hydrophobic drug away from the resultant hydrophilic domains and into surrounding environment.Results: In vitro and in vivo results revealed that the self-assembled micelles and the encapsulated natamycin were not cytotoxic and the released drug have strong antifungal ability to Candida albicans. Importantly, sustained natamycin release from micelles leads to the reduced administration frequency of natamycin from 8 times per day to 3 times per day in rabbits suffering from fungal keratitis (FK).Conclusion: This study demonstrates a facile method that can greatly reduce dosing frequency of natamycin administration and thus improve long-term patient compliance.
Collapse
Affiliation(s)
- Yiyuan Guo
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Peoples Republic of China.,Department of Chemical Engineering, The University of Melbourne, Melbourne, Australia
| | - Fatemeh Karimi
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Qiang Fu
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Australia.,The Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, Australia
| | - Greg G Qiao
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Australia
| | - Hong Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Peoples Republic of China
| |
Collapse
|