1
|
Lu YS, Moreno ER, Huang Y, Fan R, Tucker AT, Wright LK, Evans RA, Ahern BM, Owens DE, Chappell SA, Christensen DJ, Dresios J, Sailor MJ. Engineering a Mesoporous Silicon Nanoparticle Cage to Enhance Performance of a Phosphotriesterase Enzyme for Degradation of VX Nerve Agent. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409535. [PMID: 39492800 DOI: 10.1002/advs.202409535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Indexed: 11/05/2024]
Abstract
The organophosphate (OP)-hydrolyzing enzyme phosphotriesterase (PTE, variant L7ep-3a) immobilized within a partially oxidized mesoporous silicon nanoparticle cage is synthesized and the catalytic performance of the enzyme@nanoparticle construct for hydrolysis of a simulant, dimethyl p-nitrophenyl phosphate (DMNP), and the live nerve agent VX is benchmarked against the free enzyme. In a neutral aqueous buffer, the optimized construct shows a ≈2-fold increase in the rate of DMNP turnover relative to the free enzyme. Enzyme@nanoparticles with more hydrophobic surface chemistry in the interior of the pores show lower catalytic activity, suggesting the importance of hydration of the pore interior on performance. The enzyme@nanoparticle construct is readily separated from the neutralized agent; the nanoparticle is found to retain DMNP hydrolysis activity through seven decontamination/recovery cycles. The nanoparticle cage stabilizes the enzyme against thermal denaturing and enzymatic (trypsin) degradation conditions relative to free enzyme. When incorporated into a topical gel formulation, the PTE-loaded nanoparticles show high activity toward the nerve agent VX in an ex vivo rabbit skin model. In vitro acetylcholinesterase (AChE) assays in human blood show that the enzyme@nanoparticle construct decontaminates VX, preserving the biological function of AChE when exposed to an otherwise incapacitating dose.
Collapse
Affiliation(s)
- Yi-Sheng Lu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Yubin Huang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ruhan Fan
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ashley T Tucker
- Leidos, 10260 Campus Point Drive, San Diego, CA, 92121, United States
| | - Linnzi K Wright
- US Army Combat Capabilities Development Command, Chemical Biological Center, 8938 N Kings Creek Rd., E3150, Gunpowder, MD, 21010, USA
| | - Ronald A Evans
- US Army Combat Capabilities Development Command, Chemical Biological Center, 8938 N Kings Creek Rd., E3150, Gunpowder, MD, 21010, USA
| | - Brooke M Ahern
- US Army Combat Capabilities Development Command, Chemical Biological Center, 8938 N Kings Creek Rd., E3150, Gunpowder, MD, 21010, USA
| | - Donald E Owens
- TFF Pharmaceuticals, 1751 River Run, Fort Worth, TX, 76107, USA
| | | | | | - John Dresios
- Leidos, 10260 Campus Point Drive, San Diego, CA, 92121, United States
| | - Michael J Sailor
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
2
|
Shin S, Jo H, Agura T, Jeong S, Ahn H, Kim Y, Kang JS. Use of surface-modified porous silicon nanoparticles to deliver temozolomide with enhanced pharmacokinetic and therapeutic efficacy for intracranial glioblastoma in mice. J Mater Chem B 2024; 12:9335-9344. [PMID: 39171683 DOI: 10.1039/d4tb00631c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Glioblastoma (GBM) is one of the most common and fatal primary brain tumors, with a 5-year survival rate of 7.2%. The standard treatment for GBM involves surgical resection followed by chemoradiotherapy, and temozolomide (TMZ) is currently the only approved chemotherapeutic agent for the treatment of GBM. However, hydrolytic instability and insufficient drug accumulation are major challenges that limit the effectiveness of TMZ chemotherapy. To overcome these limitations, we have developed a drug delivery platform utilizing porous silicon nanoparticles (pSiNPs) to improve the stability and blood-brain barrier penetration of TMZ. The pSiNPs are synthesized via electrochemical etching and functionalized with octadecane. The octadecyl-modified pSiNP (pSiNP-C18) demonstrates the superiority of loading efficiency, in vivo stability, and brain accumulation of TMZ. Treatment of intracranial tumor-bearing mice with TMZ-loaded pSiNP-C18 results in a decreased tumor burden and a corresponding increase in survival compared with equivalent free-drug dosing. Furthermore, the mice treated with TMZ-loaded nanoparticles do not exhibit in vivo toxicity, thus underscoring the preclinical potential of the pSiNP-based platform for the delivery of therapeutic agents to gliomas.
Collapse
Affiliation(s)
- Seulgi Shin
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
- Department of Research and Development, N therapeutics Co., Ltd, Seoul 08813, Republic of Korea
| | - Hyejung Jo
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Tomoyo Agura
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Seoyoun Jeong
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Hyovin Ahn
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Yejin Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| | - Jae Seung Kang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Pira A, Amatucci A, Melis C, Pezzella A, Manini P, d'Ischia M, Mula G. The interplay of chemical structure, physical properties, and structural design as a tool to modulate the properties of melanins within mesopores. Sci Rep 2022; 12:11436. [PMID: 35794122 PMCID: PMC9258763 DOI: 10.1038/s41598-022-14347-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
The design of modern devices that can fulfil the requirements for sustainability and renewable energy applications calls for both new materials and a better understanding of the mixing of existing materials. Among those, surely organic–inorganic hybrids are gaining increasing attention due to the wide possibility to tailor their properties by accurate structural design and materials choice. In this work, we’ll describe the tight interplay between porous Si and two melanic polymers permeating the pores. Melanins are a class of biopolymers, known to cause pigmentation in many living species, that shows very interesting potential applications in a wide variety of fields. Given the complexity of the polymerization process beyond the formation and structure, the full understanding of the melanins' properties remains a challenging task. In this study, the use of a melanin/porous Si hybrid as a tool to characterize the polymer’s properties within mesopores gives new insights into the conduction mechanisms of melanins. We demonstrate the dramatic effect induced on these mechanisms in a confined environment by the presence of a thick interface. In previous studies, we already showed that the interactions at the interface between porous Si and eumelanin play a key role in determining the final properties of composite materials. Here, thanks to a careful monitoring of the photoconductivity properties of porous Si filled with melanins obtained by ammonia-induced solid-state polymerization (AISSP) of 5,6-dihydroxyindole (DHI) or 1,8-dihydroxynaphthalene (DHN), we investigate the effect of wet, dry, and vacuum cycles of storage from the freshly prepared samples to months-old samples. A computational study on the mobility of water molecules within a melanin polymer is also presented to complete the understanding of the experimental data. Our results demonstrate that: (a) the hydration-dependent behavior of melanins is recovered in large pores (≈ 60 nm diameter) while is almost absent in thinner pores (≈ 20 nm diameter); (b) DHN-melanin materials can generate higher photocurrents and proved to be stable for several weeks and more sensitive to the wet/dry variations.
Collapse
Affiliation(s)
- Alessandro Pira
- PoroSiLab, Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042, Monserrato (Ca), Italy
| | - Alberto Amatucci
- PoroSiLab, Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042, Monserrato (Ca), Italy
| | - Claudio Melis
- Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042, Monserrato (Ca), Italy
| | - Alessandro Pezzella
- Dipartimento di Fisica "Ettore Pancini", Università di Napoli "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 21, 80126, Napoli (Na), Italy
| | - Paola Manini
- Dipartimento di Scienze Chimiche, Università di Napoli "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 21, 80126, Napoli (Na), Italy
| | - Marco d'Ischia
- Dipartimento di Scienze Chimiche, Università di Napoli "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 21, 80126, Napoli (Na), Italy
| | - Guido Mula
- PoroSiLab, Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042, Monserrato (Ca), Italy.
| |
Collapse
|
4
|
Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev 2021; 50:4872-4931. [PMID: 33734247 DOI: 10.1039/d0cs01061h] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Stimulus-cleavable nanoscale drug delivery systems are receiving significant attention owing to their capability of achieving exquisite control over drug release via the exposure to specific stimuli. Central to the construction of such systems is the integration of cleavable linkers showing susceptibility to one stimulus or several stimuli with drugs, prodrugs or fluorogenic probes on the one hand, and nanocarriers on the other hand. This review summarises recent advances in stimulus-cleavable linkers from various research areas and the corresponding mechanisms of linker cleavage and biological applications. The feasibility of extending their applications to the majority of nanoscale drug carriers including nanomaterials, polymers and antibodies are further highlighted and discussed. This review also provides general design guidelines to incorporate stimulus-cleavable linkers into nanocarrier-based drug delivery systems, which will hopefully spark new ideas and applications.
Collapse
Affiliation(s)
- Yufei Xue
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Jonathan Baell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Nicolas Hans Voelcker
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia and Department of Materials Science & Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|