1
|
Pantovic-Stefanovic M, Karanovic J, Jurisic V, Dunjic-Kostic B, Nesic M, Dodic S, Gostiljac M, Puric M, Savic Pavicevic D, Ivkovic M. Mood disorders and 5-HTR2A genetic variants - the moderator effect of inflammation on expression of affective polarity phenotype. BMC Psychiatry 2024; 24:747. [PMID: 39472813 PMCID: PMC11520582 DOI: 10.1186/s12888-024-06207-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Although repeatedly confirmed, the molecular nature of gene-environment (GxE) interactions has rarely been investigated in the clinical context of mood disorders. This study assesses the relationship between HTR2A genetic variants and the modulatory effect of inflammation in a collective cohort of patients with major depressive disorder (MDD) and bipolar disorder (BD), as a unified group with two distinct phenotypes. METHODS The study included 138 patients with acute mood episodes (BD = 83; MDD = 55). HTR2A rs6313 and rs6314 genotyping was performed while measuring platelet-derived indicators of inflammation (platelet count (PLT), mean platelet volume (MPV), plateletcrit, and platelet distribution width) and the MPV/PLT ratio. RESULTS The HTR2A rs6313 variant is a significant predictor of the polarity phenotype in mood disorders, with the MPV/PLT ratio moderating this relationship, but only under low-inflammatory conditions. In more pronounced inflammatory states, genetic influences lose their predictive role. CONCLUSIONS To our knowledge, this is the first study to investigate the complex interplay between platelet-derived indicators of inflammation and HTR2A variants in the context of mood disorders. Without pro-inflammatory conditions, mood disorders seem to be more genetically determined. Under pro-inflammatory conditions, phenotypic presentation is less dependent on genetic factors. GxE interactions in mood disorders are multifaceted, context-dependent and relevant for assessing their clinical presentation and course.
Collapse
Affiliation(s)
- Maja Pantovic-Stefanovic
- Department for Bipolar Disorders, Clinic for Psychiatry, University Clinical Centre of Serbia, Pasterova 2, Belgrade, 11000, Serbia.
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, Belgrade, 11000, Serbia.
| | - Jelena Karanovic
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, 11000, Serbia
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444A, Belgrade, 11042, Serbia
| | - Vladimir Jurisic
- Faculty of Medical Scinces, University of Kragujevac, Svetozara Markovica 69, Kragujevac, 11000, Serbia
| | - Bojana Dunjic-Kostic
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, Belgrade, 11000, Serbia
- Institute of Mental Health, Milana Kasanina 3, Belgrade, 11000, Serbia
| | - Milica Nesic
- Department for Bipolar Disorders, Clinic for Psychiatry, University Clinical Centre of Serbia, Pasterova 2, Belgrade, 11000, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, Belgrade, 11000, Serbia
| | - Sara Dodic
- Department for Bipolar Disorders, Clinic for Psychiatry, University Clinical Centre of Serbia, Pasterova 2, Belgrade, 11000, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, Belgrade, 11000, Serbia
| | - Marta Gostiljac
- Department for Bipolar Disorders, Clinic for Psychiatry, University Clinical Centre of Serbia, Pasterova 2, Belgrade, 11000, Serbia
| | - Marija Puric
- Department for Bipolar Disorders, Clinic for Psychiatry, University Clinical Centre of Serbia, Pasterova 2, Belgrade, 11000, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, Belgrade, 11000, Serbia
| | - Dusanka Savic Pavicevic
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, 11000, Serbia
| | - Maja Ivkovic
- Department for Bipolar Disorders, Clinic for Psychiatry, University Clinical Centre of Serbia, Pasterova 2, Belgrade, 11000, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, Belgrade, 11000, Serbia
| |
Collapse
|
2
|
Kong L, Wang H, Yan N, Xu C, Chen Y, Zeng Y, Guo X, Lu J, Hu S. Effect of antipsychotics and mood stabilisers on metabolism in bipolar disorder: a network meta-analysis of randomised-controlled trials. EClinicalMedicine 2024; 71:102581. [PMID: 38618207 PMCID: PMC11015341 DOI: 10.1016/j.eclinm.2024.102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024] Open
Abstract
Background Antipsychotics and mood stabilisers are gathering attention for the disturbance of metabolism. This network meta-analysis aims to evaluate and rank the metabolic effects of the commonly used antipsychotics and mood stabilisers in treating bipolar disorder (BD). Methods Registries including PubMed, Embase, Cochrane Library, Web of Science, Ovid, and Google Scholar were searched before February 15th, 2024, for randomised controlled trials (RCTs) applying antipsychotics or mood stabilisers for BD treatment. The observed outcomes were twelve metabolic indicators. The data were extracted by two reviewers independently, and confirmed by another four reviewers and a corresponding author. The above six reviewers all participated in data analyses. Data extraction was based on PRISMA guidelines, and quality assessment was conducted according to the Cochrane Handbook. Use a random effects model for data pooling. The PROSPERO registration number is CRD42023466669. Findings Together, 5421 records were identified, and 41 publications with 11,678 complete-trial participants were confirmed eligible. After eliminating possible sensitivity, risperidone ranked 1st in elevating fasting serum glucose (SUCRA = 90.7%) and serum insulin (SUCRA = 96.6%). Lurasidone was most likely to elevate HbA1c (SUCRA = 82.1%). Olanzapine ranked 1st in elevating serum TC (SUCRA = 93.3%), TG (SUCRA = 89.6%), and LDL (SUCRA = 94.7%). Lamotrigine ranked 1st in reducing HDL (SUCRA = 82.6%). Amisulpride ranked 1st in elevating body weight (SUCRA = 100.0%). For subgroup analyses, quetiapine is more likely to affect indicators of glucose metabolism among male adult patients with bipolar mania, while long-term lurasidone tended to affect glucose metabolism among female patients with bipolar depression. Among patients under 18, divalproex tended to affect glucose metabolism, with lithium affecting lipid metabolism. In addition, most observed antipsychotics performed higher response and remission rates than placebo, and displayed a similar dropout rate with placebo, while no between-group significance of rate was observed among mood stabilisers. Interpretation Our findings suggest that overall, antipsychotics are effective in treating BD, while they are also more likely to disturb metabolism than mood stabilisers. Attention should be paid to individual applicability in clinical practice. The results put forward evidence-based information and clinical inspiration for drug compatibility and further research of the BD mechanism. Funding The National Key Research and Development Program of China (2023YFC2506200), and the Research Project of Jinan Microecological Biomedicine Shandong Laboratory (No. JNL-2023001B).
Collapse
Affiliation(s)
- Lingzhuo Kong
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Huaizhi Wang
- School of Psychiatry, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ning Yan
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Shanghai Jing ‘an District Mental Health Centre, Shanghai, 200040, China
| | - Chenyue Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yiqing Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuanyuan Zeng
- Hangzhou Medical College, School of Clinical Medicine, Hangzhou, 310003, China
| | - Xiaonan Guo
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jing Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou, 310003, China
- Zhejiang Engineering Centre for Mathematical Mental Health, Hangzhou, 310003, China
- MOE Frontier Science Centre for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, 310003, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- School of Psychiatry, Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou, 310003, China
- Zhejiang Engineering Centre for Mathematical Mental Health, Hangzhou, 310003, China
- MOE Frontier Science Centre for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, 310003, China
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
3
|
Shahcheraghi SH, Ayatollahi J, Lotfi M, Aljabali AAA, Al-Zoubi MS, Panda PK, Mishra V, Satija S, Charbe NB, Serrano-Aroca Á, Bahar B, Takayama K, Goyal R, Bhatia A, Almutary AG, Alnuqaydan AM, Mishra Y, Negi P, Courtney A, McCarron PA, Bakshi HA, Tambuwala MM. Gene Therapy for Neuropsychiatric Disorders: Potential Targets and Tools. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:51-65. [PMID: 35249508 DOI: 10.2174/1871527321666220304153719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/16/2022] [Indexed: 01/01/2023]
Abstract
Neuropsychiatric disorders that affect the central nervous system cause considerable pressures on the health care system and have a substantial economic burden on modern societies. The present treatments based on available drugs are mostly ineffective and often costly. The molecular process of neuropsychiatric disorders is closely connected to modifying the genetic structures inherited or caused by damage, toxic chemicals, and some current diseases. Gene therapy is presently an experimental concept for neurological disorders. Clinical applications endeavor to alleviate the symptoms, reduce disease progression, and repair defective genes. Implementing gene therapy in inherited and acquired neurological illnesses entails the integration of several scientific disciplines, including virology, neurology, neurosurgery, molecular genetics, and immunology. Genetic manipulation has the power to minimize or cure illness by inducing genetic alterations at endogenous loci. Gene therapy that involves treating the disease by deleting, silencing, or editing defective genes and delivering genetic material to produce therapeutic molecules has excellent potential as a novel approach for treating neuropsychiatric disorders. With the recent advances in gene selection and vector design quality in targeted treatments, gene therapy could be an effective approach. This review article will investigate and report the newest and the most critical molecules and factors in neuropsychiatric disorder gene therapy. Different genome editing techniques available will be evaluated, and the review will highlight preclinical research of genome editing for neuropsychiatric disorders while also evaluating current limitations and potential strategies to overcome genome editing advancements.
Collapse
Affiliation(s)
- Seyed H Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jamshid Ayatollahi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Mazhar S Al-Zoubi
- Yarmouk University, Faculty of Medicine, Department of Basic Medical Sciences, Irbid, Jordan
| | - Pritam K Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Nitin B Charbe
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001 Valencia, Spain
| | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Kazuo Takayama
- Center for IPS Cell Research and Application, Kyoto University, Kyoto, 606-8397, Japan
| | - Rohit Goyal
- Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Post Box No. 9, Solan, Himachal Pradesh 173212, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Punjab 151001, India
| | - Abdulmajeed G Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Yachana Mishra
- Shri Shakti Degree College, Sankhahari, Ghatampur 209206, India
| | - Poonam Negi
- Shoolini University of Biotechnology and Management Sciences, Solan 173 212, India
| | - Aaron Courtney
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Paul A McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Hamid A Bakshi
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| |
Collapse
|
4
|
Chang HH, Hsueh YS, Cheng YW, Tseng HH. A Longitudinal Study of the Association between the LEPR Polymorphism and Treatment Response in Patients with Bipolar Disorder. Int J Mol Sci 2022; 23:ijms23179635. [PMID: 36077028 PMCID: PMC9455965 DOI: 10.3390/ijms23179635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Patients with bipolar disorder (BD) exhibit individual variability in the treatment outcome, and genetic background could contribute to BD itself and the treatment outcome. Leptin levels significantly change in BD patients treated with valproate (VPA), but whether LEPR polymorphisms are associated with treatment response is still unknown. This longitudinal study aimed to investigate the associations between LEPR polymorphisms and VPA treatment response in BD patients who were drug naïve at their first diagnosis of BD. The single-nucleotide polymorphisms (SNPs) of LEPR (rs1137101, rs1137100, rs8179183, and rs12145690) were assayed, and the LEPR polymorphism frequencies of alleles and genotypes were not significantly different between the controls (n = 77) and BD patients (n = 130). In addition, after the 12-week course of VPA treatment in BD patients, the LEPR polymorphisms showed significant effects on changes in disease severity. Moreover, considering the effect of the LEPR haplotype, the frequency of the CAGG haplotype in BD patients was higher than that in the controls (9.3 vs. 2.9%, p = 0.016), and the LEPR CAGG haplotype was associated with a better treatment response than the other haplotypes in BD patients receiving VPA treatment. Therefore, LEPR polymorphisms might serve as mediators involved in the therapeutic action of VPA treatment.
Collapse
Affiliation(s)
- Hui Hua Chang
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Department of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Department of Pharmacy, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin 640, Taiwan
- Correspondence: ; Tel.: +886-6-2353535 (ext. 5683)
| | - Yuan-Shuo Hsueh
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| | - Yung Wen Cheng
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Huai-Hsuan Tseng
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
5
|
Adler G, Uzar I, Valjevac A, Kiseljakovic E, Mahmutbegovic E, Salkic NN, Adler MA, Mahmutbegovic N. Genetic diversity of CYP3A5 and ABCB1 variants in East-Central and South European populations. Ann Hum Biol 2022; 49:210-215. [PMID: 35815612 DOI: 10.1080/03014460.2022.2100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/10/2022] [Accepted: 07/01/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND CYP3A5 enzyme encoded by CYP3A5 is important for drug metabolism in gut and liver, whereas P-glycoprotein by ABCB1, is an ATP-dependent drug efflux pump which exports endo- and exogenous substances outside the cell. AIM The study was to assess the prevalence of CYP3A5 alleles: *1, *2, *3, *4, *6 and *7, and C and T of ABCB1 in Poles, Belarusians and Bosnians and to compare it with the data reported from other European populations. SUBJECTS AND METHODS Overall, 511 unrelated healthy subjects from Poland (n = 239), Belarus (n = 104) and Bosnia and Herzegovina (n = 168) were included in this study. Allele frequencies and statistical parameters (AMOVA version 2.9.3) were determined. RESULTS In Poles, Belarusians and Bosnians the *3 allele of CYP3A5 was the most common, and wild-type allele *1, were: 5.8%, 1.6% and 2.1%, respectively. Allele *2 was very rare, and alleles *4, *6 and *7 were not detected. For the populations mentioned above, the ABCB1 allele C was: 48.1%, 51.4%, 52.4%, respectively. CONCLUSION In compared populations, the distribution of CYP3A5 variants but not ABCB1, differed significantly. Alleles *4, *6 and *7 of CYP3A5 did not occur or occurred rarely.
Collapse
Affiliation(s)
- Grazyna Adler
- Department of Studies in Antropogenetics and Biogerontology, Pomeranian Medical University, Szczecin, Poland
| | - Izabela Uzar
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University, Szczecin, Poland
| | - Amina Valjevac
- Department of Human Physiology, Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Emina Kiseljakovic
- Department of Medical Biochemistry, Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Emir Mahmutbegovic
- Institution of Health Protection of Women and Motherhood Canton Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Nermin N Salkic
- Department of Gastroenterology and Hepatology, University Clinical Centre Tuzla, Tuzla, Bosnia and Herzegovina
| | | | - Nevena Mahmutbegovic
- Neurology Clinic, Clinical Center of University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
6
|
Abstract
Many patients under treatment for mood disorders, in particular patients with bipolar mood disorders, experience episodes of mood switching from one state to another. Various hypotheses have been proposed to explain the mechanism of mood switching, spontaneously or induced by drug treatment. Animal models have also been used to test the role of psychotropic drugs in the switching of mood states. We examine the possible relationship between the pharmacology of psychotropic drugs and their reported incidents of induced mood switching, with reference to the various hypotheses of mechanisms of mood switching.
Collapse
|
7
|
Zhang P, Kong L, Huang H, Pan Y, Zhang D, Jiang J, Shen Y, Xi C, Lai J, Ng CH, Hu S. Gut Microbiota – A Potential Contributor in the Pathogenesis of Bipolar Disorder. Front Neurosci 2022; 16:830748. [PMID: 35401095 PMCID: PMC8984199 DOI: 10.3389/fnins.2022.830748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Bipolar disorder (BD) is one of the major psychiatric disorders that is characterized by recurrent episodes of depression and mania (or hypomania), leading to seriously adverse outcomes with unclear pathogenesis. There is an underlying relationship between bacterial communities residing in the gut and brain function, which together form the gut-brain axis (GBA). Recent studies have shown that changes in the gut microbiota have been observed in a large number of BD patients, so the axis may play a role in the pathogenesis of BD. This review summarizes briefly the relationship between the GBA and brain function, the composition and changes of gut microbiota in patients with BD, and further explores the potential role of GBA-related pathway in the pathogenesis of BD as well as the limitations in this field at present in order to provide new ideas for the future etiology research and drug development.
Collapse
Affiliation(s)
- Peifen Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
| | - Lingzhuo Kong
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huimin Huang
- Department of Psychiatry, Wenzhou Medical University, Wenzhou, China
| | - Yanmeng Pan
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danhua Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajun Jiang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuting Shen
- Department of Psychiatry, Wenzhou Medical University, Wenzhou, China
| | - Caixi Xi
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianbo Lai
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
| | - Chee H. Ng
- Department of Psychiatry, The Melbourne Clinic and St Vincent’s Hospital, University of Melbourne, Richmond, VIC, Australia
- *Correspondence: Chee H. Ng,
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Shaohua Hu,
| |
Collapse
|
8
|
Hussen BM, Abdullah ST, Salihi A, Sabir DK, Sidiq KR, Rasul MF, Hidayat HJ, Ghafouri-Fard S, Taheri M, Jamali E. The emerging roles of NGS in clinical oncology and personalized medicine. Pathol Res Pract 2022; 230:153760. [PMID: 35033746 DOI: 10.1016/j.prp.2022.153760] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) has been increasingly popular in genomics studies over the last decade, as new sequencing technology has been created and improved. Recently, NGS started to be used in clinical oncology to improve cancer therapy through diverse modalities ranging from finding novel and rare cancer mutations, discovering cancer mutation carriers to reaching specific therapeutic approaches known as personalized medicine (PM). PM has the potential to minimize medical expenses by shifting the current traditional medical approach of treating cancer and other diseases to an individualized preventive and predictive approach. Currently, NGS can speed up in the early diagnosis of diseases and discover pharmacogenetic markers that help in personalizing therapies. Despite the tremendous growth in our understanding of genetics, NGS holds the added advantage of providing more comprehensive picture of cancer landscape and uncovering cancer development pathways. In this review, we provided a complete overview of potential NGS applications in scientific and clinical oncology, with a particular emphasis on pharmacogenomics in the direction of precision medicine treatment options.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Abbas Salihi
- Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq; Department of Biology, College of Science, Salahaddin University, Kurdistan Region, Erbil, Iraq
| | - Dana Khdr Sabir
- Department of Medical Laboratory Sciences, Charmo University, Kurdistan Region, Iraq
| | - Karzan R Sidiq
- Department of Biology, College of Education, University of Sulaimani, Sulaimani 334, Kurdistan, Iraq
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Kurdistan Region, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University, Kurdistan Region, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elena Jamali
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Genetic Variations Associated with Long-Term Treatment Response in Bipolar Depression. Genes (Basel) 2021; 12:genes12081259. [PMID: 34440433 PMCID: PMC8391230 DOI: 10.3390/genes12081259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Several pharmacogenetic-based decision support tools for psychoactive medication selection are available. However, the scientific evidence of the gene-drug pairs analyzed is mainly based on pharmacogenetic studies in patients with major depression or schizophrenia, and their clinical utility is mostly assessed in major depression. This study aimed at evaluating the impact of individual genes, with pharmacogenetic relevance in other psychiatric conditions, in the response to treatment in bipolar depression. Seventy-six patients diagnosed with bipolar disorder and an index major depressive episode were included in an observational retrospective study. Sociodemographic and clinical data were collected, and all patients were genotyped using a commercial multigene pharmacogenomic-based tool (Neuropharmagen®, AB-Biotics S.A., Barcelona, Spain). Multiple linear regression was used to identify pharmacogenetic and clinical predictors of efficacy and tolerability of medications. The pharmacogenetic variables response to serotonin-norepinephrine reuptake inhibitors (SNRIs) (ABCB1) and reduced metabolism of quetiapine (CYP3A4) predicted patient response to these medications, respectively. ABCB1 was also linked to the tolerability of SNRIs. An mTOR-related multigenic predictor was also associated with a lower number of adverse effects when including switch and autolytical ideation. Our results suggest that the predictors identified could be useful to guide the pharmacological treatment in bipolar disorder. Additional clinical studies are necessary to confirm these findings.
Collapse
|
10
|
Iannaccone T, Sellitto C, Manzo V, Colucci F, Giudice V, Stefanelli B, Iuliano A, Corrivetti G, Filippelli A. Pharmacogenetics of Carbamazepine and Valproate: Focus on Polymorphisms of Drug Metabolizing Enzymes and Transporters. Pharmaceuticals (Basel) 2021; 14:204. [PMID: 33804537 PMCID: PMC8001195 DOI: 10.3390/ph14030204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/18/2022] Open
Abstract
Pharmacogenomics can identify polymorphisms in genes involved in drug pharmacokinetics and pharmacodynamics determining differences in efficacy and safety and causing inter-individual variability in drug response. Therefore, pharmacogenomics can help clinicians in optimizing therapy based on patient's genotype, also in psychiatric and neurological settings. However, pharmacogenetic screenings for psychotropic drugs are not routinely employed in diagnosis and monitoring of patients treated with mood stabilizers, such as carbamazepine and valproate, because their benefit in clinical practice is still controversial. In this review, we summarize the current knowledge on pharmacogenetic biomarkers of these anticonvulsant drugs.
Collapse
Affiliation(s)
- Teresa Iannaccone
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
| | - Carmine Sellitto
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Valentina Manzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Francesca Colucci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
| | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
| | - Berenice Stefanelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
| | - Antonio Iuliano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
| | - Giulio Corrivetti
- European Biomedical Research Institute of Salerno (EBRIS), 84125 Salerno, Italy;
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| |
Collapse
|