1
|
Fatale S, Patil JK, Pardeshi CV, Pande VV, Bhutkar MA, Parashar K, Sonawane RO. Montmorillonite: An advanced material with diverse pharmaceutical and medicinal applications. ANNALES PHARMACEUTIQUES FRANÇAISES 2024:S0003-4509(24)00166-4. [PMID: 39515642 DOI: 10.1016/j.pharma.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/29/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Montmorillonite (MMT) clay is composed of naturally layered silicate. The clays were more popular in the pharmaceutical and other various fields due to their beneficial physicochemical properties viz. non-toxicity, high surface area, efficient adsorption capability, high swellability, high dispersibility, thixotropic behaviour, and cation exchange capacity. Chemically modified clay provides significant opportunities in variety of applications. MMT finds very crucial place in pharmaceutical field owing to its medicinal properties, which may be used to delay the drug release in chronic physiological conditions and the targeted drug release as well. It is also used to improve the dissolution rate of certain drug molecules, which increased the attention of the researchers to explore the MMT for drug delivery applications. MMT clay has been used as pharmaceutical aids viz. suspending agent, lubricant, anticaking agent, diluent, emulsifier, nanocomposites-forming material, and sometimes filler. MMT clay have been investigated in the fabrication of different pharmaceutical formulations viz. hydrogel, films, nanocomposites, and matrix-based systems. MMT has obtained industrial importance due to its adsorption property and also finds use in wastewater treatment. Other than this, MMT also finds applications in cosmetic industry, food industry, and paper industry. Considering the wide applicability of MMT, it is need of an hour to explore the MMT for further commercial exploitation.
Collapse
Affiliation(s)
- Sagar Fatale
- Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Near Karwand Naka, Shirpur, India
| | - Javesh K Patil
- Department of Pharmacognasy. PSGVPM'S College of Pharmacy, Shahada, India
| | - Chandrakantsing V Pardeshi
- Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Near Karwand Naka, Shirpur, India
| | - Vishal V Pande
- Department of Pharmaceutics, RSMs N.N. Sattha College of Pharmacy, Ahamadnagar, India
| | - Mangesh A Bhutkar
- Department of Pharmaceutics, Rajaram Bapu College of Pharmacy, Kasegaon, India
| | - Komal Parashar
- Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Near Karwand Naka, Shirpur, India
| | - Raju O Sonawane
- Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Near Karwand Naka, Shirpur, India.
| |
Collapse
|
2
|
Khane Y, Albukhaty S, Sulaiman GM, Fennich F, Bensalah B, Hafsi Z, Aouf M, Amar ZH, Aouf D, Al-kuraishy HM, Saadoun H, Mohammed HA, Mohsin MH, Al-aqbi ZT. Fabrication, characterization and application of biocompatible nanocomposites: A review. Eur Polym J 2024; 214:113187. [DOI: 10.1016/j.eurpolymj.2024.113187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Huang P, Tang N, Mao LF, Zhang Y, Tang XF, Zhou RY, Wei B, Tan HL, Shi QM, Lin J, Li ZC, Chang S. Nanoclay Drug-Delivery System Loading Potassium Iodide Promotes Endocytosis and Targeted Therapy in Anaplastic Thyroid Cancer. NANO LETTERS 2023; 23:8013-8021. [PMID: 37615624 PMCID: PMC10510574 DOI: 10.1021/acs.nanolett.3c01984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/22/2023] [Indexed: 08/25/2023]
Abstract
The rapid proliferative biological behavior of primary foci of anaplastic thyroid cancer (ATC) makes it a lethal tumor. According to the specific iodine uptake capacity of thyroid cells and enhanced endocytosis of ATC cells, we designed a kind of nanoclay drug-loading system and showed a promising treatment strategy for ATC. Introducing potassium iodide (KI) improves the homoaggregation of clay nanoparticles and then affects the distribution of nanoparticles in vivo, which makes KI@DOX-KaolinMeOH enriched almost exclusively in thyroid tissue. Simultaneously, the improvement of dispersibility of KI@DOX-KaolinMeOH changes the target uptake of ATC cells by improving the endocytosis and nanoparticle-induced autophagy, which regulate the production of autolysosomes and autophagy-enhanced chemotherapy, eventually contributing to a tumor inhibition rate of more than 90% in the primary foci of ATC. Therefore, this facile strategy to improve the homoaggregation of nanoclay by introducing KI has the potential to become an advanced drug delivery vehicle in ATC treatment.
Collapse
Affiliation(s)
- Peng Huang
- Department
of General Surgery, Xiangya Hospital Central
South University, Changsha, Hunan Province 410008, China
| | - Neng Tang
- Department
of General Surgery, Xiangya Hospital Central
South University, Changsha, Hunan Province 410008, China
| | - Lin-Feng Mao
- Department
of Hepatobiliary Surgery, The First Affiliated
Hospital of Guangxi Medical University, Nanning, Guangxi Province 530021, China
| | - Yi Zhang
- Centre
for Mineral Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan Province 410083, China
| | - Xiao-Feng Tang
- Department
of General Surgery, Xiangya Hospital Central
South University, Changsha, Hunan Province 410008, China
| | - Ruo-Yun Zhou
- Department
of General Surgery, Xiangya Hospital Central
South University, Changsha, Hunan Province 410008, China
| | - Bo Wei
- Department
of General Surgery, Xiangya Hospital Central
South University, Changsha, Hunan Province 410008, China
| | - Hai-Long Tan
- Department
of General Surgery, Xiangya Hospital Central
South University, Changsha, Hunan Province 410008, China
| | - Qi-Man Shi
- Department
of General Surgery, Xiangya Hospital Central
South University, Changsha, Hunan Province 410008, China
| | - Jing Lin
- Department
of General Surgery, Xiangya Hospital Central
South University, Changsha, Hunan Province 410008, China
| | - Zhe-Cheng Li
- Department
of General Surgery, Xiangya Hospital Central
South University, Changsha, Hunan Province 410008, China
| | - Shi Chang
- Department
of General Surgery, Xiangya Hospital Central
South University, Changsha, Hunan Province 410008, China
- Clinical
Research Center for Thyroid Disease in Hunan Province, Xiangya Hospital Central South University, Changsha, Hunan Province 410008, China
- Hunan
Provincial Engineering Research Center for Thyroid and Related Diseases
Treatment Technology, Xiangya Hospital Central
South University, Changsha, Hunan Province 410008, China
| |
Collapse
|
4
|
Soltannia B, Martin-Alarcon L, Uhryn J, Govedarica A, Egberts P, Trifkovic M. Enhanced rheological and tribological properties of nanoenhanced greases by tuning interparticle contacts. J Colloid Interface Sci 2023; 645:560-569. [PMID: 37163802 DOI: 10.1016/j.jcis.2023.04.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/12/2023]
Abstract
HYPOTHESIS Despite the wide spectrum of available nanoparticles, their utilization in lubricant and grease formulations remains challenging. To enhance their performance, an improved link between the interparticle contacts, brittleness of the resulting particle network, time-dependent rheology and tribology is required. EXPERIMENTS We systematically changed interparticle contacts and examined their effect on the colloidal stability, microstructure, rheological and tribological behavior of model greases by investigating four types of nanoclays: montmorillonite (Cloisite Na+), oleic-acid functionalized Cloisite Na+ (OA-Cloisite Na+), organomodified montmorillonite (C20A) and oleic-acid functionalized C20A (C20A-OA). FINDINGS We observed a range of behaviors, starting from the lack of colloidal stability in greases derived with Cloisite Na+ and OA-Cloisite Na+ to semi-solid type systems with C20A and C20A-OA. Consistent with previous studies, the rheological and tribological properties of C20A systems scale with nanoclay loadings. Surprisingly, the functionalized C20A-OA system exhibited a delayed transition towards hydrodynamic lubrication, and enhanced lubrication properties, both of which were largely independent of nanoclay loadings. Coupled microstructural investigation and time-dependent rheology reveal that this behavior is governed by increasing repulsive forces, decreasing inter-particle friction between C20A-OA nanoparticles, and faster reorganization of the C20A-OA nanoparticle network under shear. Increased interparticle repulsion enables C20A-OA nanoclays to pass each other under shear and align in direction of shear, which reduces the overall viscosity, while the presence of OA on nanoclays decreases inter-particle friction and particle-steel surface friction.
Collapse
Affiliation(s)
- Babak Soltannia
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, T2N 1Y4, Alberta, Canada; Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, T2N 1Y4, Alberta, Canada
| | - Leonardo Martin-Alarcon
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, T2N 1Y4, Alberta, Canada
| | - Jackson Uhryn
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, T2N 1Y4, Alberta, Canada; Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, T2N 1Y4, Alberta, Canada
| | - Aleksandra Govedarica
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, T2N 1Y4, Alberta, Canada
| | - Philip Egberts
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, T2N 1Y4, Alberta, Canada.
| | - Milana Trifkovic
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, T2N 1Y4, Alberta, Canada.
| |
Collapse
|
5
|
Effect of Organomontmorillonite-Cloisite ® 20A Incorporation on the Structural and Drug Release Properties of Ureasil-PEO Hybrid. Pharmaceutics 2022; 15:pharmaceutics15010033. [PMID: 36678662 PMCID: PMC9866471 DOI: 10.3390/pharmaceutics15010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
This paper presents the influence of the presence of a modified organoclay, Cloisite® 20A (MMTA) on the structural and drug release properties of ureasil organic-inorganic hybrid. Sol-gel process was used to prepare the hybrid nanocomposites containing sodium diclofenac (DCF) at 5% wt. The effect of the amount of MMTA incorporated into the ureasil hybrid matrix was evaluated and characterized in depth by different techniques such as X-ray diffraction (XRD), small angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), and swelling properties. The influence of MMTA on ureasil nanocomposites release profile was evaluated by in situ UV-vis. The diffraction patterns of the UPEO-MMTA nanocomposites showed a synergistic contribution effect that led to an intensity increase and narrowed the diffraction peaks, evidencing a crystallite PEO growth as a function of the modified nanoclay content. The interactions between polyether chains and the hydrogenated tallow of MMTA led to an easy intercalation process, as observed in UPEO-MMTA nanocomposites containing low (1% wt) or high (20% wt) nanoclay content. The waterway (channels) created in UPEO-MMTA nanocomposites contributed to a free volume increase in the swollen network compared to UPEO without MMTA. The hypothesis of the channels created after intercalation of the PEO phase in the interlayer of MMTA containing organoammonium ions corroborates with the XRD results, swelling studies by SAXS, and release assays. Furthermore, when these clay particles were dispersed in the polymeric matrix by an intercalation process, water uptake improvement was observed, with an increased amount of DCF release. The design of ureasil-MMTA nanocomposites containing modified nanoclay endows them with tunable properties; for example, swelling degree followed by amount of controlled drug release, opening the way for more versatile biomedical applications.
Collapse
|
6
|
Kolev I, Ivanova N, Topouzova-Hristova T, Dimova T, Koseva P, Vasileva I, Ivanova S, Apostolov A, Alexieva G, Tzonev A, Strashilov V. Ammonio Methacrylate Copolymer (Type B)-Diltiazem Interactions in Solid Dispersions and Microsponge Drug-Delivery Systems. Polymers (Basel) 2022; 14:polym14102125. [PMID: 35632008 PMCID: PMC9144411 DOI: 10.3390/polym14102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/23/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
This paper presents a complex analytical study on the distribution, solubility, amorphization, and compatibility of diltiazem within the composition of Eudragit RS 100-based particles of microspongeous type. For this purpose, a methodology combining attenuated total reflectance Fourier transform infrared (ATR-FTIR) absorption spectroscopy, differential scanning calorimetry (DSC), scanning electron microscopy with energy-dispersive X-ray microanalysis (SEM-EDX), and in vitro dissolution study is proposed. The correct interpretation of the FTIR and drug-dissolution results was guaranteed by the implementation of two contrasting reference models: physical drug–polymer mixtures and casting-obtained, molecularly dispersed drug–polymer composites (solid dispersions). The spectral behavior of the drug–polymer composites in the carbonyl frequency (νCO) region was used as a quality marker for the degree of their interaction/mutual solubility. A spectral-pattern similarity between the microsponge particles and the solid dispersions indicated the molecular-type dispersion of the former. The comparative drug-desorption study and the qualitative observations over the DSC and SEM-EDX results confirmed the successful synthesis of a homogeneous coamorphous microsponge-type formulation with excellent drug-loading capacity and “controlled” dissolution profile. Among them, the drug-delivery particles with 25% diltiazem content (M-25) were recognized as the most promising, with the highest population of drug molecules in the polymer bulk and the most suitable desorption profile. Furthermore, an economical and effective analytical algorithm was developed for the comprehensive physicochemical characterization of complex delivery systems of this kind.
Collapse
Affiliation(s)
- Iliyan Kolev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
- Correspondence: (I.K.); (N.I.)
| | - Nadezhda Ivanova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria
- Correspondence: (I.K.); (N.I.)
| | - Tanya Topouzova-Hristova
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University “St. Kl. Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria;
| | - Tanya Dimova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
| | - Pavlina Koseva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
| | - Ivalina Vasileva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
| | - Sonya Ivanova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
| | - Anton Apostolov
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1 J. Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Gergana Alexieva
- Department of General Physics, Faculty of Physics, Sofia University “St. Kl. Ohridski”, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Atanas Tzonev
- Department of Condensed Matter Physics and Microelectronics, Faculty of Physics, Sofia University “St. Kl. Ohridski”, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria; (A.T.); (V.S.)
| | - Vesselin Strashilov
- Department of Condensed Matter Physics and Microelectronics, Faculty of Physics, Sofia University “St. Kl. Ohridski”, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria; (A.T.); (V.S.)
| |
Collapse
|
7
|
Marin MM, Ianchis R, Leu Alexa R, Gifu IC, Kaya MGA, Savu DI, Popescu RC, Alexandrescu E, Ninciuleanu CM, Preda S, Ignat M, Constantinescu R, Iovu H. Development of New Collagen/Clay Composite Biomaterials. Int J Mol Sci 2021; 23:401. [PMID: 35008826 PMCID: PMC8745677 DOI: 10.3390/ijms23010401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 01/22/2023] Open
Abstract
The fabrication of collagen-based biomaterials for skin regeneration offers various challenges for tissue engineers. The purpose of this study was to obtain a novel series of composite biomaterials based on collagen and several types of clays. In order to investigate the influence of clay type on drug release behavior, the obtained collagen-based composite materials were further loaded with gentamicin. Physiochemical and biological analyses were performed to analyze the obtained nanocomposite materials after nanoclay embedding. Infrared spectra confirmed the inclusion of clay in the collagen polymeric matrix without any denaturation of triple helical conformation. All the composite samples revealed a slight change in the 2-theta values pointing toward a homogenous distribution of clay layers inside the collagen matrix with the obtaining of mainly intercalated collagen-clay structures, according X-ray diffraction analyses. The porosity of collagen/clay composite biomaterials varied depending on clay nanoparticles sort. Thermo-mechanical analyses indicated enhanced thermal and mechanical features for collagen composites as compared with neat type II collagen matrix. Biodegradation findings were supported by swelling studies, which indicated a more crosslinked structure due additional H bonding brought on by nanoclays. The biology tests demonstrated the influence of clay type on cellular viability but also on the antimicrobial behavior of composite scaffolds. All nanocomposite samples presented a delayed gentamicin release when compared with the collagen-gentamicin sample. The obtained results highlighted the importance of clay type selection as this affects the performances of the collagen-based composites as promising biomaterials for future applications in the biomedical field.
Collapse
Affiliation(s)
- Maria Minodora Marin
- Advanced Polymer Materials Group, Politehnica University of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania;
- Collagen Department, Leather and Footwear Research Institute, 93 Ion Minulescu Street, 031215 Bucharest, Romania; (M.G.A.K.); (M.I.); (R.C.)
| | - Raluca Ianchis
- National Research & Development Institute for Chemistry and Petrochemistry, ICECHIM, Spl. Independentei Nr. 202, 6th District, 060021 Bucharest, Romania; (I.C.G.); (E.A.); (C.M.N.)
| | - Rebeca Leu Alexa
- Advanced Polymer Materials Group, Politehnica University of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania;
| | - Ioana Catalina Gifu
- National Research & Development Institute for Chemistry and Petrochemistry, ICECHIM, Spl. Independentei Nr. 202, 6th District, 060021 Bucharest, Romania; (I.C.G.); (E.A.); (C.M.N.)
| | - Madalina Georgiana Albu Kaya
- Collagen Department, Leather and Footwear Research Institute, 93 Ion Minulescu Street, 031215 Bucharest, Romania; (M.G.A.K.); (M.I.); (R.C.)
| | - Diana Iulia Savu
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, 077125 Magurele, Romania; (D.I.S.); (R.C.P.)
| | - Roxana Cristina Popescu
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, 077125 Magurele, Romania; (D.I.S.); (R.C.P.)
| | - Elvira Alexandrescu
- National Research & Development Institute for Chemistry and Petrochemistry, ICECHIM, Spl. Independentei Nr. 202, 6th District, 060021 Bucharest, Romania; (I.C.G.); (E.A.); (C.M.N.)
| | - Claudia Mihaela Ninciuleanu
- National Research & Development Institute for Chemistry and Petrochemistry, ICECHIM, Spl. Independentei Nr. 202, 6th District, 060021 Bucharest, Romania; (I.C.G.); (E.A.); (C.M.N.)
| | - Silviu Preda
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania;
| | - Madalina Ignat
- Collagen Department, Leather and Footwear Research Institute, 93 Ion Minulescu Street, 031215 Bucharest, Romania; (M.G.A.K.); (M.I.); (R.C.)
| | - Roxana Constantinescu
- Collagen Department, Leather and Footwear Research Institute, 93 Ion Minulescu Street, 031215 Bucharest, Romania; (M.G.A.K.); (M.I.); (R.C.)
| | - Horia Iovu
- Advanced Polymer Materials Group, Politehnica University of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania;
- Chemical Sciences Section, Academy of Romanian Scientists, 54 Splaiul Independentei, 50085 Bucharest, Romania
| |
Collapse
|
8
|
Nanocomposite PLA/C20A Nanoclay by Ultrasound-Assisted Melt Extrusion for Adsorption of Uremic Toxins and Methylene Blue Dye. NANOMATERIALS 2021; 11:nano11102477. [PMID: 34684919 PMCID: PMC8537835 DOI: 10.3390/nano11102477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/18/2021] [Indexed: 12/04/2022]
Abstract
Design of functional materials it is of great importance to address important problems in the areas of health and environment. In the present work, the synthesis and application of poly-meric nanocomposite materials with poly (lactic acid) (PLA) and modified nanoclay (cloisite 20A) with 1,4-diaminobutane dihydrochloride at different reaction times were studied. The concentra-tions of the nanoclays in the PLA matrix were 0.5, 1 and, 5% by weight (wt%). TGA showed that sample C20AM 120 (120 min of treatment) obtained the highest degree of modification considering the weight losses of the analyzed samples. An FT-IR signal at 1443 cm−1 suggests that the organic modifier is intercalated between the galleries of the clay. XRD, SEM and XPS suggest good disper-sion at low concentrations of the nanoclay. Adsorption tests revealed that the highest percentage of removal of uremic toxins and methylene blue was the sample with 5% wt/wt chemically modified nanoclay, suggesting good affinity between the modified nanoclays in the PLA matrix with the nitrogenous compounds.
Collapse
|
9
|
Porcino M, Li X, Gref R, Martineau-Corcos C. Solid-State NMR Spectroscopy: A Key Tool to Unravel the Supramolecular Structure of Drug Delivery Systems. Molecules 2021; 26:4142. [PMID: 34299416 PMCID: PMC8306949 DOI: 10.3390/molecules26144142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022] Open
Abstract
In the past decades, nanosized drug delivery systems (DDS) have been extensively developed and studied as a promising way to improve the performance of a drug and reduce its undesirable side effects. DDSs are usually very complex supramolecular assemblies made of a core that contains the active substance(s) and ensures a controlled release, which is surrounded by a corona that stabilizes the particles and ensures the delivery to the targeted cells. To optimize the design of engineered DDSs, it is essential to gain a comprehensive understanding of these core-shell assemblies at the atomic level. In this review, we illustrate how solid-state nuclear magnetic resonance (ssNMR) spectroscopy has become an essential tool in DDS design.
Collapse
Affiliation(s)
- Marianna Porcino
- CEMHTI UPR CNRS 3079, Université d’Orléans, 45071 Orléans, France
| | - Xue Li
- Institut des Sciences Moléculaires d’Orsay, UMR CNRS 8214, Paris-Sud University, Université Paris Saclay, 91400 Orsay, France; (X.L.); (R.G.)
| | - Ruxandra Gref
- Institut des Sciences Moléculaires d’Orsay, UMR CNRS 8214, Paris-Sud University, Université Paris Saclay, 91400 Orsay, France; (X.L.); (R.G.)
| | | |
Collapse
|
10
|
Akgöl S, Ulucan-Karnak F, Kuru Cİ, Kuşat K. The usage of composite nanomaterials in biomedical engineering applications. Biotechnol Bioeng 2021; 118:2906-2922. [PMID: 34050923 DOI: 10.1002/bit.27843] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/04/2021] [Accepted: 05/23/2021] [Indexed: 12/23/2022]
Abstract
Nanotechnology is still developing over the decades and it is commonly used in biomedical applications with the design of nanomaterials due to the several purposes. With the investigation of materials on the molecular level has increased the develop composite nanomaterials with exceptional properties using in different applications and industries. The application of these composite nanomaterials is widely used in the fields of textile, chemical, energy, defense industry, electronics, and biomedical engineering which is growing and developing on human health. Development of biosensors for the diagnosis of diseases, drug targeting and controlled release applications, medical implants and imaging techniques are the research topics of nanobiotechnology. In this review, overview of the development of nanotechnology and applications which is use of composite nanomaterials in biomedical engineering is provided.
Collapse
Affiliation(s)
- Sinan Akgöl
- Department of Biochemistry, Faculty of Science, Ege University, İzmir, Turkey
| | | | - Cansu İlke Kuru
- Department of Biochemistry, Faculty of Science, Ege University, İzmir, Turkey
| | - Kevser Kuşat
- Department of Chemistry, Faculty of Science, Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
11
|
Melt Electrospinning of Polymers: Blends, Nanocomposites, Additives and Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041808] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Melt electrospinning has been developed in the last decade as an eco-friendly and solvent-free process to fill the gap between the advantages of solution electrospinning and the need of a cost-effective technique for industrial applications. Although the benefits of using melt electrospinning compared to solution electrospinning are impressive, there are still challenges that should be solved. These mainly concern to the improvement of polymer melt processability with reduction of polymer degradation and enhancement of fiber stability; and the achievement of a good control over the fiber size and especially for the production of large scale ultrafine fibers. This review is focused in the last research works discussing the different melt processing techniques, the most significant melt processing parameters, the incorporation of different additives (e.g., viscosity and conductivity modifiers), the development of polymer blends and nanocomposites, the new potential applications and the use of drug-loaded melt electrospun scaffolds for biomedical applications.
Collapse
|
12
|
Synergic antimicrobial properties of Carvacrol essential oil and montmorillonite in biodegradable starch films. Int J Biol Macromol 2020; 164:1737-1747. [DOI: 10.1016/j.ijbiomac.2020.07.226] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022]
|
13
|
Eusepi P, Marinelli L, García-Villén F, Borrego-Sánchez A, Cacciatore I, Di Stefano A, Viseras C. Carvacrol Prodrugs with Antimicrobial Activity Loaded on Clay Nanocomposites. MATERIALS 2020; 13:ma13071793. [PMID: 32290211 PMCID: PMC7179022 DOI: 10.3390/ma13071793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/25/2020] [Accepted: 04/07/2020] [Indexed: 01/18/2023]
Abstract
Background: Carvacrol, an essential oil with antimicrobial activity against a wide range of pathogens, and its water soluble carvacrol prodrugs (WSCP1-3) were intercalated into montmorillonite (VHS) interlayers to improve their stability in physiological media and promote their absorption in the intestine. Methods: Intercalation of prodrugs by cation exchange with montmorillonite interlayer counterions was verified by X-ray powder diffraction and confirmed by Fourier transform infrared spectroscopy and thermal analysis. Results: In vitro release studies demonstrated that montmorillonite successfully controlled the release of the adsorbed prodrugs and promoted their bioactivation only in the intestinal tract where carvacrol could develop its maximum antimicrobial activity. The amount of WSCP1, WSCP2, and WSCP3 released from VHS were 38%, 54%, and 45% at acid pH in 120 min, and 65%, 78%, and 44% at pH 6.8 in 240 min, respectively. Conclusions: The resultant hybrids successfully controlled conversion of the prodrugs to carvacrol, avoiding premature degradation of the drug.
Collapse
Affiliation(s)
- Piera Eusepi
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, 66100 Abruzzo, Italy; (P.E.); (I.C.); (A.D.S.)
| | - Lisa Marinelli
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, 66100 Abruzzo, Italy; (P.E.); (I.C.); (A.D.S.)
- Correspondence: ; Tel.: +39-871-355-4475
| | - Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, 18071 Granada, Spain; (F.G.-V.); (A.B.-S.); (C.V.)
| | - Ana Borrego-Sánchez
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, 18071 Granada, Spain; (F.G.-V.); (A.B.-S.); (C.V.)
- Andalusian Institute of Earth Science, CSIC-University of Granada, Armilla, 18100 Granada, Spain
| | - Ivana Cacciatore
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, 66100 Abruzzo, Italy; (P.E.); (I.C.); (A.D.S.)
| | - Antonio Di Stefano
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, 66100 Abruzzo, Italy; (P.E.); (I.C.); (A.D.S.)
| | - Cesar Viseras
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, 18071 Granada, Spain; (F.G.-V.); (A.B.-S.); (C.V.)
- Andalusian Institute of Earth Science, CSIC-University of Granada, Armilla, 18100 Granada, Spain
| |
Collapse
|