1
|
Wang X, Alkaabi F, Cornett A, Choi M, Scheven UM, Di Natale MR, Furness JB, Liu Z. Magnetic Resonance Imaging of Gastric Motility in Conscious Rats. Neurogastroenterol Motil 2024:e14982. [PMID: 39737873 DOI: 10.1111/nmo.14982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025]
Abstract
INTRODUCTION Gastrointestinal (GI) magnetic resonance imaging (MRI) enables simultaneous assessment of gastric peristalsis, emptying, and intestinal filling and transit. However, GI MRI in animals typically requires anesthesia, which complicates physiology and confounds interpretation and translation to humans. This study aimed to establish GI MRI in conscious rats, and for the first time, characterize GI motor functions in awake versus anesthetized conditions. METHODS Fourteen Sprague-Dawley rats were acclimated to remain awake, still, and minimally stressed during MRI. GI MRI was performed under both awake and anesthetized conditions following voluntary consumption of a contrast-enhanced test meal. RESULTS Awake rats remained physiologically stable during MRI, giving rise to gastric emptying of 23.7% ± 1.4% at 48 min and robust peristaltic contractions propagating through the antrum at 0.72 ± 0.04 mm/s, with a relative amplitude of 40.7% ± 2.3% and a frequency of 5.1 ± 0.1 cycles per minute. Under anesthesia, gastric emptying was approximately halved, mainly due to a significant reduction in peristaltic contraction amplitude, rather than the change in propagation speed, whereas the contraction frequency remained unchanged. Additionally, the small intestine showed faster filling and stronger motility in awake rats. CONCLUSION This study demonstrates the feasibility of GI MRI in awake rats and highlights notable differences in gastric and intestinal motility between awake and anesthetized states. Our protocol provides a novel and valuable framework for preclinical studies of GI physiology and pathophysiology.
Collapse
Affiliation(s)
- Xiaokai Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Fatimah Alkaabi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashley Cornett
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Minkyu Choi
- Division of Electrical and Computer Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Ulrich M Scheven
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Madeleine R Di Natale
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - John B Furness
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Zhongming Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Division of Electrical and Computer Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Setia A, Challa RR, Vallamkonda B, Vaishali, Viswanadh MK, Muthu MS. Clinical Implications of Proton Pump Inhibitors and Vonoprazan Micro/Nano Drug Delivery Systems for Gastric Acid-Related Disorders and Imaging. Nanotheranostics 2024; 8:535-560. [PMID: 39507107 PMCID: PMC11539181 DOI: 10.7150/ntno.100727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/17/2024] [Indexed: 11/08/2024] Open
Abstract
Excessive stomach acid or bacterial infection are the root causes of gastric acid-related disorders, such as peptic ulcer disease and gastroesophageal reflux disease. Proton pump inhibitors including lansoprazole, omeprazole, esomeprazole, rabeprazole, etc. are medications used to treat gastric acid-related diseases. One of the most effective drugs for treating gastroesophageal reflux disease is vonoprazan, owing to its ability to strongly inhibit gastric acid. Proton pump inhibitors and vonoprazan work in distinct ways to prevent the production of stomach acid. Vonoprazan inhibits acid secretion by blocking the potassium-competitive acid blocker receptor, whereas proton pump inhibitors function by irreversibly blocking the proton pump in the parietal cells of the stomach. Delayed release tablets, delayed release capsules, minitablets, pellets, bilayer, floating, mucoadhesive tablets and nanoparticles, are some of the methods used in the development of micro/nano formulations with proton pump inhibitors and vonoprazan. Diagnosis and therapy of gastric acid-related illnesses, particularly those treated with drugs such as vonoprazan and proton pump inhibitors, rely heavily on imaging modalities such as CT scans, X-rays, endoscopy, fluorescence and HRM imaging. This review provides a comprehensive update on various micro/nanoformulations of proton pump inhibitors and vonoprazan. Moreover, we provide an outlook on clinical imaging of proton pump inhibitors and vonoprazan formulation for gastric acid related diseases. We have limited our discussion to case studies and clinical trials on proton pump inhibitors and vonoprazan for gastric acid related disease.
Collapse
Affiliation(s)
- Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Ranadheer Reddy Challa
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN's Foundation for Science, Technology & Research, Vadlamudi-522213, Andhra Pradesh, India
| | - Bhaskar Vallamkonda
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN's Foundation for Science, Technology & Research, Vadlamudi-522213, Andhra Pradesh, India
| | - Vaishali
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutics, KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Greenfields, Vaddeswaram 522302, AP, India
| | - Madaswamy S. Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| |
Collapse
|
3
|
Alvebratt C, Karlén F, Åhlén M, Edueng K, Dubbelboer I, Bergström CAS. Benefits of combining supersaturating and solubilizing formulations - Is two better than one? Int J Pharm 2024; 663:124437. [PMID: 39002818 DOI: 10.1016/j.ijpharm.2024.124437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
A variety of enabling formulations has been developed to address poor oral drug absorption caused by insufficient dissolution in the gastrointestinal tract. As the in vivo performance of these formulations is a result of a complex interplay between dissolution, digestion and permeation, development of suitable in vitro assays that captures these phenomena are called for. The enabling-absorption (ENA) device, consisting of a donor and receiver chamber separated by a semipermeable membrane, has successfully been used to study the performance of lipid-based formulations. In this work, the ENA device was prepared with two different setups (a Caco-2 cell monolayer and an artificial lipid membrane) to study the performance of a lipid-based formulation (LBF), an amorphous solid dispersion (ASD) and the potential benefit of combining the two formulation strategies. An in vivo pharmacokinetic study in rats was performed to evaluate the in vitro-in vivo correlation. In the ENA, high drug concentrations in the donor chamber did not translate to a high mass transfer, which was particularly evident for the ASD as compared to the LBF. The solubility of the polymer used in the ASD was strongly affected by pH-shifts in vitro, and the ph_dependence resulted in poor in vivo performance of the formulation. The dissolution was however increased in vitro when the ASD was combined with a blank lipid-based formulation. This beneficial effect was also observed in vivo, where the drug exposure of the ASD increased significantly when the ASD was co-administered with the blank LBF. To conclude, the in vitro model managed to capture solubility limitations and strategies to overcome these for one of the formulations studied. The correlation between the in vivo exposure of the drug exposure and AUC in the ENA was good for the non pH-sensitive formulations. The deconvoluted pharmacokinetic data indicated that the receiver chamber was a better predictor for the in vivo performance of the drug, however both chambers provided valuable insights to the observed outcome in vivo. This shows that the advanced in vitro setting used herein successfully could explain absorption differences of highly complex formulations.
Collapse
Affiliation(s)
- Caroline Alvebratt
- Department of Pharmacy, Uppsala Biomedical Centre, P.O. Box 580, Uppsala University, Uppsala SE-751 23, Sweden.
| | - Filip Karlén
- Department of Pharmacy, Uppsala Biomedical Centre, P.O. Box 580, Uppsala University, Uppsala SE-751 23, Sweden.
| | - Michelle Åhlén
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, Uppsala SE-75121, Sweden.
| | - Khadijah Edueng
- Department of Pharmacy, Uppsala Biomedical Centre, P.O. Box 580, Uppsala University, Uppsala SE-751 23, Sweden
| | - Ilse Dubbelboer
- The Swedish Drug Delivery Center, Department of Pharmaceutical Biosciences, Uppsala Biomedical Centre, P.O. Box 591, Uppsala University, Uppsala SE-751 24, Sweden.
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala Biomedical Centre, P.O. Box 580, Uppsala University, Uppsala SE-751 23, Sweden; The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala Biomedical Centre, P.O. Box 580, Uppsala University, Uppsala SE-751 23, Sweden.
| |
Collapse
|
4
|
Wang X, Alkaabi F, Cornett A, Choi M, Scheven UM, Di Natale MR, Furness JB, Liu Z. Magnetic Resonance Imaging of Gastric Motility in Conscious Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612090. [PMID: 39314428 PMCID: PMC11419018 DOI: 10.1101/2024.09.09.612090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Introduction Gastrointestinal (GI) magnetic resonance imaging (MRI) can simultaneously capture gastric peristalsis, emptying, and intestinal filling and transit. Performing GI MRI with animals requires anesthesia, which complicates physiology and confounds interpretation and translation from animals to humans. This study aims to enable MRI in conscious rats, and for the first time, characterize GI motor functions in awake versus anesthetized conditions. Methods We acclimated rats to remain awake, still, and minimally stressed during MRI. We scanned 14 Sprague-Dawley rats in both awake and anesthetized conditions after voluntarily consuming a contrast-enhanced test meal. Results Awake rats remained physiologically stable during MRI, showed gastric emptying of 23.7±1.4% after 48 minutes, and exhibited strong peristaltic contractions propagating through the antrum with a velocity of 0.72±0.04 mm/s, a relative amplitude of 40.7±2.3%, and a frequency of 5.1±0.1 cycles per minute. In the anesthetized condition, gastric emptying was about half of that in the awake condition, likely due to the effect of anesthesia in halving the amplitudes of peristaltic contractions rather than their frequency (not significantly changed) or velocity. In awake rats, the intestine filled more quickly and propulsive contractions were more occlusive. Conclusion We demonstrated the effective acquisition and analysis of GI MRI in awake rats. Awake rats show faster gastric emptying, stronger gastric contraction with a faster propagation speed, and more effective intestinal filling and transit, compared to anesthetized rats. Our protocol is expected to benefit future preclinical studies of GI physiology and pathophysiology.
Collapse
|
5
|
Evstafeva D, Ilievski F, Bao Y, Luo Z, Abramovic B, Kang S, Steuer C, Montanari E, Casalini T, Simicic D, Sessa D, Mitrea SO, Pierzchala K, Cudalbu C, Armbruster CE, Leroux JC. Inhibition of urease-mediated ammonia production by 2-octynohydroxamic acid in hepatic encephalopathy. Nat Commun 2024; 15:2226. [PMID: 38472276 DOI: 10.1038/s41467-024-46481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatic encephalopathy is a neuropsychiatric complication of liver disease which is partly associated with elevated ammonemia. Urea hydrolysis by urease-producing bacteria in the colon is often mentioned as one of the main routes of ammonia production in the body, yet research on treatments targeting bacterial ureases in hepatic encephalopathy is limited. Herein we report a hydroxamate-based urease inhibitor, 2-octynohydroxamic acid, exhibiting improved in vitro potency compared to hydroxamic acids that were previously investigated for hepatic encephalopathy. 2-octynohydroxamic acid shows low cytotoxic and mutagenic potential within a micromolar concentration range as well as reduces ammonemia in rodent models of liver disease. Furthermore, 2-octynohydroxamic acid treatment decreases cerebellar glutamine, a product of ammonia metabolism, in male bile duct ligated rats. A prototype colonic formulation enables reduced systemic exposure to 2-octynohydroxamic acid in male dogs. Overall, this work suggests that urease inhibitors delivered to the colon by means of colonic formulations represent a prospective approach for the treatment of hepatic encephalopathy.
Collapse
Affiliation(s)
- Diana Evstafeva
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Filip Ilievski
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Yinyin Bao
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Zhi Luo
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Boris Abramovic
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Sunghyun Kang
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Christian Steuer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Elita Montanari
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Tommaso Casalini
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Dunja Simicic
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
| | - Dario Sessa
- Swiss Pediatric Liver Center, Department of Pediatrics, Gynecology and Obstetrics, University Hospitals Geneva and University of Geneva, Geneva, Switzerland
| | - Stefanita-Octavian Mitrea
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
| | - Katarzyna Pierzchala
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
| | - Cristina Cudalbu
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
| | - Chelsie E Armbruster
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Seoane-Viaño I, Pérez-Ramos T, Liu J, Januskaite P, Guerra-Baamonde E, González-Ramírez J, Vázquez-Caruncho M, Basit AW, Goyanes A. Visualizing disintegration of 3D printed tablets in humans using MRI and comparison with in vitro data. J Control Release 2024; 365:348-357. [PMID: 37972762 DOI: 10.1016/j.jconrel.2023.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/02/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Three-dimensional (3D) printing is revolutionising the way that medicines are manufactured today, paving the way towards more personalised medicine. However, there is limited in vivo data on 3D printed dosage forms, and no studies to date have been performed investigating the intestinal behaviour of these drug products in humans, hindering the complete translation of 3D printed medications into clinical practice. Furthermore, it is unknown whether conventional in vitro release tests can accurately predict the in vivo performance of 3D printed formulations in humans. In this study, selective laser sintering (SLS) 3D printing technology has been used to produce two placebo torus-shaped tablets (printlets) using different laser scanning speeds. The printlets were administered to 6 human volunteers, and in vivo disintegration times were assessed using magnetic resonance imaging (MRI). In vitro disintegration tests were performed using a standard USP disintegration apparatus, as well as an alternative method based on the use of reduced media volume and minimal agitation. Printlets fabricated at a laser scanning speed of 90 mm/s exhibited an average in vitro disintegration time of 7.2 ± 1 min (measured using the USP apparatus) and 25.5 ± 4.1 min (measured using the alternative method). In contrast, printlets manufactured at a higher laser scanning speed of 130 mm/s had an in vitro disintegration time of 2.8 ± 0.8 min (USP apparatus) and 18.8 ± 1.9 min (alternative method). When tested in humans, printlets fabricated at a laser scanning speed of 90 mm/s showed an average disintegration time of 17.3 ± 7.2 min, while those manufactured at a laser scanning speed of 130 mm/s exhibited a shorter disintegration time of 12.7 ± 6.8 min. Although the disintegration times obtained using the alternative method more closely resembled those obtained in vivo, no clear correlation was observed between the in vitro and in vivo disintegration times, highlighting the need to develop better in vitro methodology for 3D printed drug products.
Collapse
Affiliation(s)
- Iria Seoane-Viaño
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Paraquasil Group (GI-2109), Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
| | - Tania Pérez-Ramos
- Radiology Department, University Hospital Lucus Augusti (HULA), Rúa Dr. Ulises Romero, 1, Lugo 27003, Spain
| | - Jiaqi Liu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Patricija Januskaite
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Elena Guerra-Baamonde
- Radiology Department, University Hospital Lucus Augusti (HULA), Rúa Dr. Ulises Romero, 1, Lugo 27003, Spain
| | - Jorge González-Ramírez
- Radiology Department, University Hospital Lucus Augusti (HULA), Rúa Dr. Ulises Romero, 1, Lugo 27003, Spain
| | - Manuel Vázquez-Caruncho
- Radiology Department, University Hospital Lucus Augusti (HULA), Rúa Dr. Ulises Romero, 1, Lugo 27003, Spain.
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK.
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela (USC), Santiago de Compostela 15782, Spain.
| |
Collapse
|
7
|
Kjeldsen RB, Ghavami M, Thamdrup LH, Boisen A. Magnetic and/or Radiopaque Functionalization of Self-Unfolding Foils for Improved Applicability within Oral Drug Delivery. ACS Biomater Sci Eng 2023; 9:6773-6782. [PMID: 37989264 PMCID: PMC10716816 DOI: 10.1021/acsbiomaterials.3c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Various types of microfabricated devices have been proposed for overcoming the gastrointestinal (GI) challenges associated with oral administration of pharmaceutical compounds. However, unidirectional drug release in very close forced proximity to the intestinal wall still appears to be an unresolved issue for many of these microdevices, which typically show low drug absorption and thereby low bioavailabilities. This work explores how recently developed and promising self-unfolding foils (SUFs) can be magnetically and/or radiopaquely (M/R-) functionalized, by the addition of BaSO4 or Fe3O4 nanoparticles, for improving their applicability within oral drug delivery. Through surface characterization, mechanical testing, and X-ray imaging, the (M/R-)SUFs are generally inspected and their overall properties compared. Furthermore, R-SUFs are being used in an in vivo rat X-ray imaging study, whereas in situ rat testing of MR-SUFs are attempted together with an investigation of their general magnetic properties. Unfolding of the R-SUF, and its very close forced proximity to the small intestine, is very easily observed 2 h post-administration by applying both computed tomography scanning and planar X-ray imaging. In addition, MR-SUFs show a great magnetic response in water, which suggests the possibility for controlled motion and retention in the GI tract. However, the magnetic response does not seem strong enough for in situ rat testing, but most likely a strong magnetization of the MR-SUFs using for example an impulse magnetizer can be made for increasing the magnetic response. All of the results presented herein are highly relevant and applicable for future usage of (M/R-)SUFs, as well as similar devices, in pre-clinical studies and potential clinical trials.
Collapse
Affiliation(s)
- Rolf Bech Kjeldsen
- The Danish National Research
Foundation and Villum Foundation’s Center for Intelligent Drug
Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN),
Department of Health Technology, Technical
University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mahdi Ghavami
- The Danish National Research
Foundation and Villum Foundation’s Center for Intelligent Drug
Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN),
Department of Health Technology, Technical
University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Lasse Højlund
Eklund Thamdrup
- The Danish National Research
Foundation and Villum Foundation’s Center for Intelligent Drug
Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN),
Department of Health Technology, Technical
University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anja Boisen
- The Danish National Research
Foundation and Villum Foundation’s Center for Intelligent Drug
Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN),
Department of Health Technology, Technical
University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Ghavami M, Pedersen J, Kjeldsen RB, Alstrup AKO, Zhang Z, Koulianou V, Palmfeldt J, Vorup-Jensen T, Thamdrup LHE, Boisen A. A self-unfolding proximity enabling device for oral delivery of macromolecules. J Control Release 2023; 361:40-52. [PMID: 37506850 DOI: 10.1016/j.jconrel.2023.07.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Oral delivery of macromolecules remains highly challenging due to their rapid degradation in the gastrointestinal tract and poor absorption across the tight junctions of the epithelium. In the last decade, researchers have investigated several medical devices to overcome these challenges using various approaches, some of which involve piercing through the intestine using micro and macro needles. We have developed a new generation of medical devices called self-unfolding proximity enabling devices, which makes it possible to orally deliver macromolecules without perforating the intestine. These devices protect macromolecules from the harsh conditions in the stomach and release their active pharmaceutical ingredients in the vicinity of the intestinal epithelium. One device version is a self-unfolding foil that we have used to deliver insulin and nisin to rats and pigs respectively. In our study, this device has shown a great potential for delivering peptides, with a significant increase in the absorption of solid dosage of insulin by ∼12 times and nisin by ∼4 times in rats and pigs, respectively. With the ability to load solid dosage forms, our devices can facilitate enhanced absorption of minimally invasive oral macromolecule formulations.
Collapse
Affiliation(s)
- Mahdi Ghavami
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Jesper Pedersen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Rolf Bech Kjeldsen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | - Zhongyang Zhang
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Vasiliki Koulianou
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine (MMF), Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Lasse Højlund Eklund Thamdrup
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
9
|
Aghababaie Z, Wang THH, Nisbet LA, Matthee A, Dowrick J, Sands GB, Paskaranandavadivel N, Cheng LK, O'Grady G, Angeli-Gordon TR. Anaesthesia by intravenous propofol reduces the incidence of intra-operative gastric electrical slow-wave dysrhythmias compared to isoflurane. Sci Rep 2023; 13:11824. [PMID: 37479717 PMCID: PMC10362009 DOI: 10.1038/s41598-023-38612-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023] Open
Abstract
Gastric motility is coordinated by bioelectrical slow-wave activity, and abnormal electrical dysrhythmias have been associated with nausea and vomiting. Studies have often been conducted under general anaesthesia, while the impact of general anaesthesia on slow-wave activity has not been studied. Clinical studies have shown that propofol anaesthesia reduces postoperative nausea and vomiting (PONV) compared with isoflurane, while the underlying mechanisms remain unclear. In this study, we investigated the effects of two anaesthetic drugs, intravenous (IV) propofol and volatile isoflurane, on slow-wave activity. In vivo experiments were performed in female weaner pigs (n = 24). Zolazepam and tiletamine were used to induce general anaesthesia, which was maintained using either IV propofol (n = 12) or isoflurane (n = 12). High-resolution electrical mapping of slow-wave activity was performed. Slow-wave dysrhythmias occurred less often in the propofol group, both in the duration of the recorded period that was dysrhythmic (propofol 14 ± 26%, isoflurane 43 ± 39%, P = 0.043 (Mann-Whitney U test)), and in a case-by-case basis (propofol 3/12, isoflurane 8/12, P = 0.015 (Chi-squared test)). Slow-wave amplitude was similar, while velocity and frequency were higher in the propofol group than the isoflurane group (P < 0.001 (Student's t-test)). This study presents a potential physiological biomarker linked to recent observations of reduced PONV with IV propofol. The results suggest that propofol is a more suitable anaesthetic for studying slow-wave patterns in vivo.
Collapse
Affiliation(s)
- Zahra Aghababaie
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Tim Hsu-Han Wang
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Linley A Nisbet
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Ashton Matthee
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Jarrah Dowrick
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Gregory B Sands
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Gregory O'Grady
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Timothy R Angeli-Gordon
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand.
- Department of Surgery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
10
|
Chang T, Kjeldsen RB, Christfort JF, Vila EM, Alstrøm TS, Zór K, Hwu E, Nielsen LH, Boisen A. 3D-Printed Radiopaque Microdevices with Enhanced Mucoadhesive Geometry for Oral Drug Delivery. Adv Healthc Mater 2023; 12:e2201897. [PMID: 36414017 PMCID: PMC11468800 DOI: 10.1002/adhm.202201897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/13/2022] [Indexed: 11/24/2022]
Abstract
During the past decades, microdevices have been evaluated as a means to overcome challenges within oral drug delivery, thus improving bioavailability. Fabrication of microdevices is often limited to planar or simple 3D designs. Therefore, this work explores how microscale stereolithography 3D printing can be used to fabricate radiopaque microcontainers with enhanced mucoadhesive geometries, which can enhance bioavailability by increasing gastrointestinal retention. Ex vivo force measurements suggest increased mucoadhesion of microcontainers with adhering features, such as pillars and arrows, compared to a neutral design. In vivo studies, utilizing planar X-ray imaging, show the time-dependent gastrointestinal location of microcontainers, whereas computed tomography scanning and cryogenic scanning electron microscopy reveal information about their spatial dynamics and mucosal interactions, respectively. For the first time, the effect of 3D microdevice modifications on gastrointestinal retention is traced in vivo, and the applied methods provide a much-needed approach for investigating the impact of device design on gastrointestinal retention.
Collapse
Affiliation(s)
- Tien‐Jen Chang
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Rolf Bech Kjeldsen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Juliane Fjelrad Christfort
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Eduard Marzo Vila
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Tommy Sonne Alstrøm
- Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Kinga Zór
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
- BioInnovation Institute FoundationCopenhagen2200Denmark
| | - En‐Te Hwu
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
- BioInnovation Institute FoundationCopenhagen2200Denmark
| | - Line Hagner Nielsen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
- BioInnovation Institute FoundationCopenhagen2200Denmark
| |
Collapse
|
11
|
Franc A, Vetchý D, Fülöpová N. Commercially Available Enteric Empty Hard Capsules, Production Technology and Application. Pharmaceuticals (Basel) 2022; 15:1398. [PMID: 36422528 PMCID: PMC9696354 DOI: 10.3390/ph15111398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 08/10/2023] Open
Abstract
Currently, there is a growing need to prepare small batches of enteric capsules for individual therapy or clinical evaluation since many acidic-sensitive substances should be protected from the stomach's acidic environment, including probiotics or fecal material, in the fecal microbiota transplantation (FMT) process. A suitable method seems to be the encapsulation of drugs or lyophilized alternatively frozen biological suspensions in commercial hard enteric capsules prepared by so-called Enteric Capsule Drug Delivery Technology (ECDDT). Manufacturers supply these types of capsules, made from pH-soluble polymers, in products such as AR Caps®, EnTRinsicTM, and Vcaps® Enteric, or capsules made of gelling polymers that release their content as the gel erodes over time when passing through the digestive tract. These include DRcaps®, EMBO CAPS® AP, BioVXR®, or ACGcaps™ HD. Although not all capsules in all formulations meet pharmaceutical requirements for delayed-release dosage forms in disintegration and dissolution tests, they usually find practical application. This literature review presents their composition and properties. Since ECDDT is a new technology, this article is based on a limited number of references.
Collapse
Affiliation(s)
- Aleš Franc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, 612 42 Brno, Czech Republic
| | - David Vetchý
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, 612 42 Brno, Czech Republic
| | - Nicole Fülöpová
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, 612 42 Brno, Czech Republic
| |
Collapse
|
12
|
Suryavanshi P, Chaudhari VS, Banerjee S. Customized 3D-printed hollow capsular device filled with norfloxacin-loaded micropellets for controlled-release delivery. Drug Deliv Transl Res 2022; 13:1183-1194. [PMID: 35776385 DOI: 10.1007/s13346-022-01198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 11/03/2022]
Abstract
Pharmacotherapy has become more focused on the personalized treatment of patients with various diseases. This field of pharmacology and pharmacogenomics focuses on developing drug delivery systems designed to address the unique characteristics of individual patients. Three-dimensional printing technology can be used to fabricate personalized drug delivery systems with desired release properties according to patient needs. Norfloxacin (NOR)-loaded micropellets (MPs) were fabricated and filled inside a stereolithography (SLA) 3D printing technology-mediated hollow capsular device in accordance with a standard size of 09 (8.4 mm length × 2.70 mm diameter). The prepared 3D-printed hollow capsular device filled with pristine NOR and NOR-loaded MPs were characterized in terms of both in vitro and in vivo means. MPs with the particle size distribution of 1540.0 ± 26 µm showed 95.63 ± 2.0% NOR content with pellet-shaped surface morphology. The in vitro release profile showed an initial lag phase of approximately 30 min, followed by the sustained release of NOR from MPs from the 3D-printed hollow capsular device. The pharmacokinetic profile showed prolonged Tmax, AUC, and evidence of good RBA of NOR compared to pure NOR after a single oral administration in the experimental animal model. The overall results confirm the feasibility of SLA-mediated 3D printing technology for preparing customized solid oral unit dosage carriers that can be filled with pure NOR- and NOR-loaded MPs with controlled-release delivery features.
Collapse
Affiliation(s)
- Purushottam Suryavanshi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101, Assam, India
| | - Vishal Sharad Chaudhari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101, Assam, India
| | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101, Assam, India.
| |
Collapse
|
13
|
Nørgaard Kristensen M, Rades T, Boisen A, Müllertz A. Impact of oral gavage technique of drug-containing microcontainers on the gastrointestinal transit and absorption in rats. Int J Pharm 2022; 618:121630. [PMID: 35245635 DOI: 10.1016/j.ijpharm.2022.121630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022]
Abstract
Oral gavage is the most common way to administer drug formulations orally to rats. Yet, the technique applied and its influence on gastrointestinal (GI) transit receive little attention. This study aims to investigate the impact of three oral gavage techniques on GI transit and drug absorption utilizing microcontainers (MCs). The MCs were filled with paracetamol and BaSO4 (1:1 w/w ratio), coated with Eudragit S100, and filled into size-9 gelatin capsules. An in vitro study confirmed the intactness of the coating, and the capsules were administered to rats with air, water, or a piston. X-ray imaging determined the locations of the MCs, and the corresponding plasma concentration of paracetamol established a correlation with the location. The fastest GI transit occurred with air-dosing, while water-dosing caused delayed gastric emptying for 3h with non-quantifiable paracetamol absorption. Piston-dosed MCs were retained in the stomach for up to 1h, though for 3h in one rat. Air-dosing caused discomfort and stress in rats, thus limiting its ethical and physiological relevance. Water-dosing confined its use due to delayed gastric emptying. In conclusion, the oral gavage technique affected the GI transit of MCs and, consequently, drug absorption. Piston-dosing appeared to be the superior dosing technique.
Collapse
Affiliation(s)
- Maja Nørgaard Kristensen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Anja Boisen
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800 Kgs. Lyngby, Denmark
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Bioneer:FARMA, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
14
|
Seoane-Viaño I, Trenfield SJ, Basit AW, Goyanes A. Translating 3D printed pharmaceuticals: From hype to real-world clinical applications. Adv Drug Deliv Rev 2021; 174:553-575. [PMID: 33965461 DOI: 10.1016/j.addr.2021.05.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/04/2021] [Accepted: 05/04/2021] [Indexed: 12/26/2022]
Abstract
Three-dimensional (3D) printing is a revolutionary technology that is disrupting pharmaceutical development by enabling the production of personalised printlets (3D printed drug products) on demand. By creating small batches of dose flexible medicines, this versatile technology offers significant advantages for clinical practice and drug development, namely the ability to personalise medicines to individual patient needs, as well as expedite drug development timelines within preclinical studies through to first-in-human (FIH) and Phase I/II clinical trials. Despite the widely demonstrated benefits of 3D printing pharmaceuticals, the clinical potential of the technology is yet to be realised. In this timely review, we provide an overview of the latest cutting-edge investigations in 3D printing pharmaceuticals in the pre-clinical and clinical arena and offer a forward-looking approach towards strategies to further aid the translation of 3D printing into the clinic.
Collapse
|
15
|
Kjeldsen RB, Kristensen MN, Gundlach C, Thamdrup LHE, Müllertz A, Rades T, Nielsen LH, Zór K, Boisen A. X-ray Imaging for Gastrointestinal Tracking of Microscale Oral Drug Delivery Devices. ACS Biomater Sci Eng 2021; 7:2538-2547. [PMID: 33856194 DOI: 10.1021/acsbiomaterials.1c00225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microscale devices are promising tools to overcome specific challenges within oral drug delivery. Despite the availability of advanced high-quality imaging techniques, visualization and tracking of microscale devices in the gastrointestinal (GI) tract is still a challenge. This work explores the possibilities of applying planar X-ray imaging and computed tomography (CT) scanning for visualization and tracking of microscale devices in the GI tract of rats. Microcontainers (MCs) are an example of microscale devices that have shown great potential as an oral drug delivery system. Barium sulfate (BaSO4) loaded into the cavity of the MCs increases their overall X-ray contrast, which allows them to be easily tracked. The BaSO4-loaded MCs are quantitatively tracked throughout the entire GI tract of rats by planar X-ray imaging and visualized in 3D by CT scanning. The majority of the BaSO4-loaded MCs are observed to retain in the stomach for 0.5-2 h, enter the cecum after 3-4 h, and leave the cecum and colon 8-10 h post-administration. The imaging approaches can be adopted and used with other types of microscale devices when investigating GI behavior in, for example, preclinical trials and potential clinical studies.
Collapse
Affiliation(s)
- Rolf Bech Kjeldsen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Maja Nørgaard Kristensen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.,Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Carsten Gundlach
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Lasse Højlund Eklund Thamdrup
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Anette Müllertz
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.,Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Thomas Rades
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.,Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Line Hagner Nielsen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Kinga Zór
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
16
|
Chen X, Liu Y, Pan D, Cao M, Wang X, Wang L, Xu Y, Wang Y, Yan J, Liu J, Yang M. 68Ga-NOTA PET imaging for gastric emptying assessment in mice. BMC Gastroenterol 2021; 21:69. [PMID: 33581729 PMCID: PMC7881688 DOI: 10.1186/s12876-021-01642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Positron emission tomography (PET) has the potential for visualization and quantification of gastric emptying (GE). The traditional Chinese medicine (TCM) has been recognized promising for constipation. This study aimed to establish a PET imaging method for noninvasive GE measurement and to evaluate the efficacy of a TCM on delayed GE caused by constipation using PET imaging. METHODS [68Ga]Ga-NOTA was synthesized as the tracer and sesame paste with different viscosity were selected as test meals. The dynamic PET scans were performed after [68Ga]Ga-NOTA mixed with test meals were administered to normal mice. Two methods were utilized for the quantification of PET imaging. A constipation mouse model was treated with maren chengqi decoction (MCD), and the established PET imaging scans were performed after the treatment. RESULTS [68Ga]Ga-NOTA was synthesized within 20 min, and its radiochemical purity was > 95%. PET images showed the dynamic process of GE. %ID/g, volume, and total activity correlated well with each other. Among which, the half of GE time derived from %ID/g for 4 test meals were 3.92 ± 0.87 min, 13.1 ± 1.25 min, 17.8 ± 1.31 min, and 59.7 ± 3.11 min, respectively. Constipation mice treated with MCD showed improved body weight and fecal conditions as well as ameliorated GE measured by [68Ga]Ga-NOTA PET. CONCLUSIONS A PET imaging method for noninvasive GE measurement was established with stable radiotracer, high image quality, and reliable quantification methods. The efficacy of MCD on delayed GE was demonstrated using PET.
Collapse
Affiliation(s)
- Xueyan Chen
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, China
| | - Yu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Maoyu Cao
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, China
| | - Xinyu Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Lizhen Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Yan Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Juan Liu
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, China. .,Immunology Center, Medical Research Institute of Southwest University, Rongchang, Chongqing, 402460, China.
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China.
| |
Collapse
|
17
|
Loisios-Konstantinidis I, Dressman J. Physiologically Based Pharmacokinetic/Pharmacodynamic Modeling to Support Waivers of In Vivo Clinical Studies: Current Status, Challenges, and Opportunities. Mol Pharm 2020; 18:1-17. [PMID: 33320002 DOI: 10.1021/acs.molpharmaceut.0c00903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling has been extensively applied to quantitatively translate in vitro data, predict the in vivo performance, and ultimately support waivers of in vivo clinical studies. In the area of biopharmaceutics and within the context of model-informed drug discovery and development (MID3), there is a rapidly growing interest in applying verified and validated mechanistic PBPK models to waive in vivo clinical studies. However, the regulatory acceptance of PBPK analyses for biopharmaceutics and oral drug absorption applications, which is also referred to variously as "PBPK absorption modeling" [Zhang et al. CPT: Pharmacometrics Syst. Pharmacol. 2017, 6, 492], "physiologically based absorption modeling", or "physiologically based biopharmaceutics modeling" (PBBM), remains rather low [Kesisoglou et al. J. Pharm. Sci. 2016, 105, 2723] [Heimbach et al. AAPS J. 2019, 21, 29]. Despite considerable progress in the understanding of gastrointestinal (GI) physiology, in vitro biopharmaceutic and in silico tools, PBPK models for oral absorption often suffer from an incomplete understanding of the physiology, overparameterization, and insufficient model validation and/or platform verification, all of which can represent limitations to their translatability and predictive performance. The complex interactions of drug substances and (bioenabling) formulations with the highly dynamic and heterogeneous environment of the GI tract in different age, ethnic, and genetic groups as well as disease states have not been yet fully elucidated, and they deserve further research. Along with advancements in the understanding of GI physiology and refinement of current or development of fully mechanistic in silico tools, we strongly believe that harmonization, interdisciplinary interaction, and enhancement of the translational link between in vitro, in silico, and in vivo will determine the future of PBBM. This Perspective provides an overview of the current status of PBBM, reflects on challenges and knowledge gaps, and discusses future opportunities around PBPK/PD models for oral absorption of small and large molecules to waive in vivo clinical studies.
Collapse
Affiliation(s)
| | - Jennifer Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main 60438, Germany.,Fraunhofer Institute of Translational Pharmacology and Medicine (ITMP), Carl-von-Noorden Platz 9, Frankfurt am Main 60438, Germany
| |
Collapse
|
18
|
Seoane-Viaño I, Gómez-Lado N, Lázare-Iglesias H, García-Otero X, Antúnez-López JR, Ruibal Á, Varela-Correa JJ, Aguiar P, Basit AW, Otero-Espinar FJ, González-Barcia M, Goyanes A, Luzardo-Álvarez A, Fernández-Ferreiro A. 3D Printed Tacrolimus Rectal Formulations Ameliorate Colitis in an Experimental Animal Model of Inflammatory Bowel Disease. Biomedicines 2020; 8:E563. [PMID: 33276641 PMCID: PMC7761558 DOI: 10.3390/biomedicines8120563] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to fabricate novel self-supporting tacrolimus suppositories using semisolid extrusion 3-dimensional printing (3DP) and to investigate their efficacy in an experimental model of inflammatory bowel disease. Blends of Gelucire 44/14 and coconut oil were employed as lipid excipients to obtain suppository formulations with self-emulsifying properties, which were then tested in a TNBS (2,4,6-trinitrobenzenesulfonic acid) induced rat colitis model. Disease activity was monitored using PET/CT medical imaging; maximum standardized uptake values (SUVmax), a measure of tissue radiotracer accumulation rate, together with body weight changes and histological assessments, were used as inflammatory indices to monitor treatment efficacy. Following tacrolimus treatment, a significant reduction in SUVmax was observed on days 7 and 10 in the rat colon sections compared to non-treated animals. Histological analysis using Nancy index confirmed disease remission. Moreover, statistical analysis showed a positive correlation (R2 = 71.48%) between SUVmax values and weight changes over time. Overall, this study demonstrates the effectiveness of 3D printed tacrolimus suppositories to ameliorate colitis and highlights the utility of non-invasive PET/CT imaging to evaluate new therapies in the preclinical area.
Collapse
Affiliation(s)
- Iria Seoane-Viaño
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (I.S.-V.); (X.G.-O.); (F.J.O.-E.)
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Noemí Gómez-Lado
- Nuclear Medicine Department and Molecular Imaging Group, University Clinical Hospital (CHUS) and Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (N.G.-L.); (Á.R.); (P.A.)
| | - Héctor Lázare-Iglesias
- Pathology Department, University Clinical Hospital Santiago de Compostela (SERGAS) (CHUS), 15706 Santiago de Compostela, Spain; (H.L.-I.); (J.R.A.-L.)
| | - Xurxo García-Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (I.S.-V.); (X.G.-O.); (F.J.O.-E.)
- Nuclear Medicine Department and Molecular Imaging Group, University Clinical Hospital (CHUS) and Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (N.G.-L.); (Á.R.); (P.A.)
| | - José Ramón Antúnez-López
- Pathology Department, University Clinical Hospital Santiago de Compostela (SERGAS) (CHUS), 15706 Santiago de Compostela, Spain; (H.L.-I.); (J.R.A.-L.)
| | - Álvaro Ruibal
- Nuclear Medicine Department and Molecular Imaging Group, University Clinical Hospital (CHUS) and Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (N.G.-L.); (Á.R.); (P.A.)
- Tejerina Foundation, José Abascal 40, 28003 Madrid, Spain
| | - Juan Jesús Varela-Correa
- Pharmacy Department, University Hospital Ourense (SERGAS), Calle Ramón Puga Noguerol 54, 32005 Ourense, Spain;
| | - Pablo Aguiar
- Nuclear Medicine Department and Molecular Imaging Group, University Clinical Hospital (CHUS) and Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (N.G.-L.); (Á.R.); (P.A.)
| | - Abdul W. Basit
- FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK;
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Francisco J. Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (I.S.-V.); (X.G.-O.); (F.J.O.-E.)
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Miguel González-Barcia
- Pharmacy Department, University Clinical Hospital Santiago de Compostela (SERGAS) (CHUS), 15706 Santiago de Compostela, Spain;
| | - Alvaro Goyanes
- FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK;
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Asteria Luzardo-Álvarez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (I.S.-V.); (X.G.-O.); (F.J.O.-E.)
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Clinical Hospital Santiago de Compostela (SERGAS) (CHUS), 15706 Santiago de Compostela, Spain;
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
19
|
Kumar A, Gulati M, Singh SK, Gowthamarajan K, Prashar R, Mankotia D, Gupta JP, Banerjee M, Sinha S, Awasthi A, Corrie L, Kumar R, Patni P, Kumar B, Pandey NK, Sadotra M, Kumar P, Kumar R, Wadhwa S, Khursheed R. Effect of co-administration of probiotics with guar gum, pectin and eudragit S100 based colon targeted mini tablets containing 5-Fluorouracil for site specific release. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Kumar R, Kumar R, Khurana N, Singh SK, Khurana S, Verma S, Sharma N, Kapoor B, Vyas M, Khursheed R, Awasthi A, Kaur J, Corrie L. Enhanced oral bioavailability and neuroprotective effect of fisetin through its SNEDDS against rotenone-induced Parkinson's disease rat model. Food Chem Toxicol 2020; 144:111590. [DOI: 10.1016/j.fct.2020.111590] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022]
|
21
|
Dou L, Gavins FKH, Mai Y, Madla CM, Taherali F, Orlu M, Murdan S, Basit AW. Effect of Food and an Animal's Sex on P-Glycoprotein Expression and Luminal Fluids in the Gastrointestinal Tract of Wistar Rats. Pharmaceutics 2020; 12:pharmaceutics12040296. [PMID: 32218182 PMCID: PMC7238204 DOI: 10.3390/pharmaceutics12040296] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
The rat is one of the most commonly used animal models in pre-clinical studies. Limited information between the sexes and the effect of food consumption on the gastrointestinal (GI) physiology, however, is acknowledged or understood. This study aimed to investigate the potential sex differences and effect of food intake on the intestinal luminal fluid and the efflux membrane transporter P-glycoprotein (P-gp) along the intestinal tract of male and female Wistar rats. To characterise the intestinal luminal fluids, pH, surface tension, buffer capacity and osmolality were measured. Absolute P-gp expression along the intestinal tract was quantified via liquid chromatography-tandem mass spectrometry (LC-MS/MS). In general, the characteristics of the luminal fluids were similar in male and female rats along the GI tract. In fasted male rats, the absolute P-gp expression gradually increased from the duodenum to ileum but decreased in the colon. A significant sex difference (p < 0.05) was identified in the jejunum where P-gp expression in males was 83% higher than in females. Similarly, ileal P-gp expression in male rats was approximately 58% higher than that of their female counterparts. Conversely, following food intake, a significant sex difference (p < 0.05) in P-gp expression was found but in a contrasting trend. Fed female rats expressed much higher P-gp levels than male rats with an increase of 77% and 34% in the jejunum and ileum, respectively. A deeper understanding of the effects of sex and food intake on the absorption of P-gp substrates can lead to an improved translation from pre-clinical animal studies into human pharmacokinetic studies.
Collapse
Affiliation(s)
- Liu Dou
- UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK; (L.D.); (F.K.H.G.); (C.M.M.); (F.T.); (M.O.); (S.M.)
| | - Francesca K. H. Gavins
- UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK; (L.D.); (F.K.H.G.); (C.M.M.); (F.T.); (M.O.); (S.M.)
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China;
| | - Christine M. Madla
- UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK; (L.D.); (F.K.H.G.); (C.M.M.); (F.T.); (M.O.); (S.M.)
| | - Farhan Taherali
- UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK; (L.D.); (F.K.H.G.); (C.M.M.); (F.T.); (M.O.); (S.M.)
| | - Mine Orlu
- UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK; (L.D.); (F.K.H.G.); (C.M.M.); (F.T.); (M.O.); (S.M.)
| | - Sudaxshina Murdan
- UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK; (L.D.); (F.K.H.G.); (C.M.M.); (F.T.); (M.O.); (S.M.)
| | - Abdul W. Basit
- UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK; (L.D.); (F.K.H.G.); (C.M.M.); (F.T.); (M.O.); (S.M.)
- Correspondence: ; Tel.: +44-20-7753-5865
| |
Collapse
|