1
|
Maestrelli F, Cirri M, Mennini N, Fiani S, Stoppacciaro B, Mura P. Development of Oral Tablets of Nebivolol with Improved Dissolution Properties, Based on Its Combinations with Cyclodextrins. Pharmaceutics 2024; 16:633. [PMID: 38794295 PMCID: PMC11124990 DOI: 10.3390/pharmaceutics16050633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
New oral tablets of nebivolol have been developed aiming to improve, by cyclodextrin (CD) complexation, its low solubility/dissolution properties-the main reason behind its poor/variable oral bioavailability. Phase-solubility studies, performed using βCD and highly-soluble βCD-derivatives, indicated sulfobutylether-βCD (SBEβCD) as the best solubilizing/complexing agent. Solid drug-SBEβCD systems were prepared by different methods and characterized for solid-state and dissolution properties. The coevaporated product was chosen for tablet development since it provided the highest dissolution rate (100% increase in dissolved drug at 10 min) and almost complete drug amorphization/complexation. The developed tablets reached the goal, allowing us to achieve 100% dissolved drug at 60 min, compared to 66% and 64% obtained, respectively, with a reference tablet without CD and a commercial tablet. However, the percentage dissolved after 10 min from such tablets was only 10% higher than the reference. This was ascribed to the potential binding/compacting abilities of SBEβCD, reflected in the greater hardness and longer disintegration times of the new tablets than the reference (7.64 vs. 1.06 min). A capsule formulation with the same composition of nebivolol-SBEβCD tablets showed about a 90% increase in dissolved drug after 5 min compared to the reference tablet, and reached 100% dissolved drug after only 20 min.
Collapse
Affiliation(s)
| | - Marzia Cirri
- Department of Chemistry, School of Human Health Sciences, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (F.M.); (N.M.); (S.F.)
| | | | | | | | - Paola Mura
- Department of Chemistry, School of Human Health Sciences, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (F.M.); (N.M.); (S.F.)
| |
Collapse
|
2
|
Nomicisio C, Ruggeri M, Bianchi E, Vigani B, Valentino C, Aguzzi C, Viseras C, Rossi S, Sandri G. Natural and Synthetic Clay Minerals in the Pharmaceutical and Biomedical Fields. Pharmaceutics 2023; 15:pharmaceutics15051368. [PMID: 37242610 DOI: 10.3390/pharmaceutics15051368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Clay minerals are historically among the most used materials with a wide variety of applications. In pharmaceutical and biomedical fields, their healing properties have always been known and used in pelotherapy and therefore attractive for their potential. In recent decades, the research has therefore focused on the systematic investigation of these properties. This review aims to describe the most relevant and recent uses of clays in the pharmaceutical and biomedical field, especially for drug delivery and tissue engineering purposes. Clay minerals, which are biocompatible and non-toxic materials, can act as carriers for active ingredients while controlling their release and increasing their bioavailability. Moreover, the combination of clays and polymers is useful as it can improve the mechanical and thermal properties of polymers, as well as induce cell adhesion and proliferation. Different types of clays, both of natural (such as montmorillonite and halloysite) and synthetic origin (layered double hydroxides and zeolites), were considered in order to compare them and to assess their advantages and different uses.
Collapse
Affiliation(s)
- Cristian Nomicisio
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Caterina Valentino
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Carola Aguzzi
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Cesar Viseras
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
3
|
Madanayake NH, Adassooriya NM. Healing Clays Structure and Functions. MEDICAL GEOLOGY 2023:253-260. [DOI: 10.1002/9781119867371.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
An In Vitro-In Vivo Simulation Approach for the Prediction of Bioequivalence. MATERIALS 2021; 14:ma14030555. [PMID: 33498960 PMCID: PMC7865526 DOI: 10.3390/ma14030555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/31/2023]
Abstract
The aim of this study was to develop a new in vitro–in vivo simulation (IVIVS) approach in order to predict the outcome of a bioequivalence study. The predictability of the IVIVS procedure was evaluated through its application in the development process of a new generic product of amlodipine/irbesartan/hydrochlorothiazide. The developed IVIVS methodology is composed of three parts: (a) mathematical description of in vitro dissolution profiles, (b) mathematical description of in vivo kinetics, and (c) development of joint in vitro–in vivo simulations. The entire programming was done in MATLAB® and all created scripts were validated through other software. The IVIVS approach can be implemented for any number of subjects, clinical design, variability and can be repeated for thousands of times using Monte Carlo techniques. The probability of success of each scenario is recorded and finally, an overall assessment is made in order to select the most suitable batch. Alternatively, if the IVIVS shows reduced probability of BE success, the R&D department is advised to reformulate the product. In this study, the IVIVS approach predicted successfully the BE outcome of the three drugs. During the development of generics, the IVIVS approach can save time and expenses.
Collapse
|
5
|
Anwer MK, Ahmed MM, Alshetaili A, Almutairy BK, Alalaiwe A, Fatima F, Ansari MN, Iqbal M. Preparation of spray dried amorphous solid dispersion of diosmin in soluplus with improved hepato-renoprotective activity: In vitro anti-oxidant and in-vivo safety studies. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
García-Villén F, Viseras C. Clay-Based Pharmaceutical Formulations and Drug Delivery Systems. Pharmaceutics 2020; 12:pharmaceutics12121142. [PMID: 33255689 PMCID: PMC7759892 DOI: 10.3390/pharmaceutics12121142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 01/06/2023] Open
Affiliation(s)
- Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain;
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain;
- Andalusian Institute of Earth Sciences, CSIC-UGR, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
- Correspondence:
| |
Collapse
|
7
|
Development of a stable oral pediatric solution of hydrochlorothiazide by the combined use of cyclodextrins and hydrophilic polymers. Int J Pharm 2020; 587:119692. [PMID: 32717285 DOI: 10.1016/j.ijpharm.2020.119692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Hydrochlorothiazide (HCT) is widely used in pediatrics for hypertension management. Due to the lack of pediatric commercial forms, community or hospital pharmacies generally prepare HCT extemporaneous pediatric suspensions by dispersing in water a portion of a crushed tablet or the drug powder; however, any dose or stability control is usually done on these preparations. Obtaining stable HCT solutions is very challenging, due to its low water-solubility and pH-dependent degradation. The aim of this work was to develop a stable 2 mg/mL-HCT oral pediatric solution without using co-solvents. Combined use of cyclodextrins (CD) and hydrophilic polymers was exploited to improve poor HCT solubility and stability. HPβCD and SBEβCD were selected, considering their safe toxicological profiles, while PVP resulted the best among the tested polymers. Low PVP concentrations (0.2-1.0%) improved the solubilizing efficiency of both CDs, allowing to reach the prefixed HCT concentration. Different CD-PVP concentrations were used to prepare several 2 mg/mL-HCT solutions in pH 5.5 buffer. The best stability was shown by solutions containing the highest SBEβCD concentration (25 mM), which allowed a 3-months stability at 4 °C. In vivo studies on rats showed that such formulation allowed a more pronounced and more reproducible diuretic effect than the corresponding HCT suspension.
Collapse
|
8
|
Eusepi P, Marinelli L, García-Villén F, Borrego-Sánchez A, Cacciatore I, Di Stefano A, Viseras C. Carvacrol Prodrugs with Antimicrobial Activity Loaded on Clay Nanocomposites. MATERIALS 2020; 13:ma13071793. [PMID: 32290211 PMCID: PMC7179022 DOI: 10.3390/ma13071793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/25/2020] [Accepted: 04/07/2020] [Indexed: 01/18/2023]
Abstract
Background: Carvacrol, an essential oil with antimicrobial activity against a wide range of pathogens, and its water soluble carvacrol prodrugs (WSCP1-3) were intercalated into montmorillonite (VHS) interlayers to improve their stability in physiological media and promote their absorption in the intestine. Methods: Intercalation of prodrugs by cation exchange with montmorillonite interlayer counterions was verified by X-ray powder diffraction and confirmed by Fourier transform infrared spectroscopy and thermal analysis. Results: In vitro release studies demonstrated that montmorillonite successfully controlled the release of the adsorbed prodrugs and promoted their bioactivation only in the intestinal tract where carvacrol could develop its maximum antimicrobial activity. The amount of WSCP1, WSCP2, and WSCP3 released from VHS were 38%, 54%, and 45% at acid pH in 120 min, and 65%, 78%, and 44% at pH 6.8 in 240 min, respectively. Conclusions: The resultant hybrids successfully controlled conversion of the prodrugs to carvacrol, avoiding premature degradation of the drug.
Collapse
Affiliation(s)
- Piera Eusepi
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, 66100 Abruzzo, Italy; (P.E.); (I.C.); (A.D.S.)
| | - Lisa Marinelli
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, 66100 Abruzzo, Italy; (P.E.); (I.C.); (A.D.S.)
- Correspondence: ; Tel.: +39-871-355-4475
| | - Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, 18071 Granada, Spain; (F.G.-V.); (A.B.-S.); (C.V.)
| | - Ana Borrego-Sánchez
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, 18071 Granada, Spain; (F.G.-V.); (A.B.-S.); (C.V.)
- Andalusian Institute of Earth Science, CSIC-University of Granada, Armilla, 18100 Granada, Spain
| | - Ivana Cacciatore
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, 66100 Abruzzo, Italy; (P.E.); (I.C.); (A.D.S.)
| | - Antonio Di Stefano
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, 66100 Abruzzo, Italy; (P.E.); (I.C.); (A.D.S.)
| | - Cesar Viseras
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, 18071 Granada, Spain; (F.G.-V.); (A.B.-S.); (C.V.)
- Andalusian Institute of Earth Science, CSIC-University of Granada, Armilla, 18100 Granada, Spain
| |
Collapse
|