1
|
Chen Q, Zhang Y, Gao J, Zhang J. CPPCGM: A Highly Efficient Sequence-Based Tool for Simultaneously Identifying and Generating Cell-Penetrating Peptides. J Chem Inf Model 2025; 65:3357-3369. [PMID: 40105337 DOI: 10.1021/acs.jcim.5c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Cell-penetrating peptides (CPPs) are usually short oligopeptides with 5-30 amino acid residues. CPPs have been proven as important drug delivery vehicles into cells through different mechanisms, demonstrating their potential as therapeutic candidates. However, experimental screening and synthesis of CPPs could be time-consuming and expensive. Recently, numerous attempts have been made to develop computational methods as a cost-effective way for screening a number of potential CPP candidates. Despite significant advancements, current methods exhibit limited feature representation capabilities, thereby constraining the potential for further performance enhancements. In this study, we developed a deep learning framework called CPPCGM, which uses protein language models (PLMs) to identify and generate novel CPPs. There are two separate blocks in this framework: CPPClassifier and CPPGenerator. The former utilizes three pretrained models for simple voting, thereby accurately categorizing CPPs and non-CPPs. The latter, similar to a generative adversarial network, including a discriminator and a generator, generates peptides that are not present in the training data set. Our proposed CPPCGM has achieved remarkably high Matthews correlation coefficient scores of 0.876, 0.923, and 0.664 on three data sets based on the classification results. Compared with the state-of-the-art methods, the performance of our method is significantly improved. The results also demonstrated the generating potential of CPPCGM through qualitative and quantitative evaluation of the generated samples. Significantly, using PLM-based methods can optimize peptides for biochemical functions, benefiting drug delivery and biomedical applications. Materials related are publicly available at https://github.com/QiufenChen/CPPCGM.
Collapse
Affiliation(s)
- Qiufen Chen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Yuewei Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jun Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
2
|
Gupta A, Shaw P, Sharma SN, Gupta S, Sinha S. Site-Specific Chemical Modulation of a Flexible Azaproline Transporter to Enhance Epirubicin Accumulation in Drug-Resistant Human Glioblastoma Cells and Blood-Brain Barrier Penetration in Adult Zebrafish. Mol Pharm 2025. [PMID: 40230168 DOI: 10.1021/acs.molpharmaceut.4c01029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Cell-penetrating peptides (CPPs) have emerged as nonviral biological carriers for the delivery of macromolecular therapeutics into cells. Despite their lower immunogenicity and cellular toxicity, CPPs often lack target specificity and proteolytic stability. Various modified CPPs have been reported to improve such selective targeting and pharmacokinetic properties in vivo. On this frontier, we have previously reported the synthesis and in vitro activity of a protease-stable non-natural δ-azaproline (δ-azp) containing CPP, named Flexible Azaproline Transporter-1 (FAT-1). In this study, we report the chemical synthesis of three modified FAT analogs (FAT-2, FAT-3, and FAT-4) and compare their biological efficacy in vitro. These analogs were designed by incorporating a β-alanine spacer between the two adjacent azaproline monomers, with structural variations (branched or linear) and terminal δ-N functionalization. Comparative biological efficacy studies demonstrated that FAT-2 exhibited the highest potency among the series, with enhanced cellular uptake and efficient endosomal escape in CHO cells. For the functional evaluation of FAT-2, the scaffold was conjugated to the antineoplastic drug, Epirubicin. The conjugate (Epi-FAT2) showed efficient induction of apoptosis in drug-resistant human glioblastoma (LN-229) cells, inhibited cell migration, and reduced ABCG2/P-glycoprotein-mediated drug efflux. The intraperitoneal (IP) administration of Epi-FAT2 in Wild Indian Karyotype (WIK) adult zebrafish revealed its superior blood-brain barrier (BBB) penetration capability with greater/diverse tissue-dependent accumulation. The promising results of FAT-2 in both in vitro and in vivo studies highlight its potential for the delivery of CNS therapeutics and exemplify the importance of suitable scaffold modification in CPPs for future studies.
Collapse
Affiliation(s)
- Abhishek Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Pallab Shaw
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Swrajit Nath Sharma
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shalini Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
3
|
Gonzalez JC, Park KW, Evans DB, Sharma R, Sahaym O, Gopalakrishnan S, dar AI, Valdez TA, Sharma A. Nano Approaches to Nucleic Acid Delivery: Barriers, Solutions, and Current Landscape. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70010. [PMID: 40223402 PMCID: PMC11994986 DOI: 10.1002/wnan.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/07/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025]
Abstract
Nucleic acid (NA) therapy holds tremendous potential for treating a wide range of genetic diseases by the delivery of therapeutic genes into target cells. However, significant challenges exist in safely and effectively delivering these genes to their intended locations. Viral vectors, though efficient, pose risks such as immunogenicity and mutagenesis. This has resulted in growing interest in non-viral, nanoparticle-based NA delivery systems. This review article describes various physiological barriers to NA delivery and explores nanoparticle-based NA delivery systems, including bioengineered nanoparticles, peptides, lipid nanoparticles, and polymeric nanoparticles, highlighting their unique features to overcome in vivo barriers for NA delivery. While these nanoparticle-based NA delivery systems offer a promising alternative to viral vectors, challenges related to cytotoxicity, reproducible synthesis, and cost need to be addressed. The current clinical landscape of NA delivery is also discussed, emphasizing the need for safer, scalable, and cost-effective solutions. Nanoparticles represent a promising future in NA therapy, with the possibility of developing clinically relevant, non-toxic, stable, and non-immunogenic delivery vehicles, paving the way for broader therapeutic applications and improved clinical outcomes.
Collapse
Affiliation(s)
- Joan Castaneda Gonzalez
- Department of ChemistryCollege of Arts and Sciences, Washington State UniversityPullmanWashingtonUSA
| | - Ki Wan Park
- Department of Otolaryngology−Head & Neck Surgery DivisionsStanford University School of MedicineStanfordCaliforniaUSA
| | - Dallin Brian Evans
- Department of ChemistryCollege of Arts and Sciences, Washington State UniversityPullmanWashingtonUSA
| | - Rishi Sharma
- Department of ChemistryCollege of Arts and Sciences, Washington State UniversityPullmanWashingtonUSA
| | - Om Sahaym
- Department of ChemistryCollege of Arts and Sciences, Washington State UniversityPullmanWashingtonUSA
| | - Shamila Gopalakrishnan
- Department of ChemistryCollege of Arts and Sciences, Washington State UniversityPullmanWashingtonUSA
| | - Aqib Iqbal dar
- Department of ChemistryCollege of Arts and Sciences, Washington State UniversityPullmanWashingtonUSA
| | - Tulio A. Valdez
- Department of Otolaryngology−Head & Neck Surgery DivisionsStanford University School of MedicineStanfordCaliforniaUSA
| | - Anjali Sharma
- Department of ChemistryCollege of Arts and Sciences, Washington State UniversityPullmanWashingtonUSA
| |
Collapse
|
4
|
Cheng T, Chen B, Zou W. Improved induction of ribozyme-controlled AAV transgene via peptide-conjugated morpholino oligos. Gene Ther 2025; 32:80-82. [PMID: 40011707 DOI: 10.1038/s41434-025-00520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/28/2025]
Affiliation(s)
- Tianyi Cheng
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Insititute of Translational Medicine, Zhejiang University, Hangzhou, China
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Baohui Chen
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
- Insititute of Translational Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Greșiță A, Hermann DM, Boboc IKS, Doeppner TR, Petcu E, Semida GF, Popa-Wagner A. Glial Cell Reprogramming in Ischemic Stroke: A Review of Recent Advancements and Translational Challenges. Transl Stroke Res 2025:10.1007/s12975-025-01331-7. [PMID: 39904845 DOI: 10.1007/s12975-025-01331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/06/2025]
Abstract
Ischemic stroke, the second leading cause of death worldwide and the leading cause of long-term disabilities, presents a significant global health challenge, particularly in aging populations where the risk and severity of cerebrovascular events are significantly increased. The aftermath of stroke involves neuronal loss in the infarct core and reactive astrocyte proliferation, disrupting the neurovascular unit, especially in aged brains. Restoring the balance between neurons and non-neuronal cells within the perilesional area is crucial for post-stroke recovery. The aged post-stroke brain mounts a fulminant proliferative astroglial response, leading to gliotic scarring that prevents neural regeneration. While countless therapeutic techniques have been attempted for decades with limited success, alternative strategies aim to transform inhibitory gliotic tissue into an environment conducive to neuronal regeneration and axonal growth through genetic conversion of astrocytes into neurons. This concept gained momentum following discoveries that in vivo direct lineage reprogramming in the adult mammalian brain is a feasible strategy for reprogramming non-neuronal cells into neurons, circumventing the need for cell transplantation. Recent advancements in glial cell reprogramming, including transcription factor-based methods with factors like NeuroD1, Ascl1, and Neurogenin2, as well as small molecule-induced reprogramming and chemical induction, show promise in converting glial cells into functional neurons. These approaches leverage the brain's intrinsic plasticity for neuronal replacement and circuit restoration. However, applying these genetic conversion therapies in the aged, post-stroke brain faces significant challenges, such as the hostile inflammatory environment and compromised regenerative capacity. There is a critical need for safe and efficient delivery methods, including viral and non-viral vectors, to ensure targeted and sustained expression of reprogramming factors. Moreover, addressing the translational gap between preclinical successes and clinical applications is essential, emphasizing the necessity for robust stroke models that replicate human pathophysiology. Ethical considerations and biosafety concerns are critically evaluated, particularly regarding the long-term effects and potential risks of genetic reprogramming. By integrating recent research findings, this comprehensive review provides an in-depth understanding of the current landscape and future prospects of genetic conversion therapy for ischemic stroke rehabilitation, highlighting the potential to enhance personalized stroke management and regenerative strategies through innovative approaches.
Collapse
Affiliation(s)
- Andrei Greșiță
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, 11568, USA
| | - Dirk M Hermann
- Chair of Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, 45147, Essen, Germany
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
| | - Ianis Kevyn Stefan Boboc
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, 37075, Göttingen, Germany
- Department of Neurology, University of Giessen Medical School, 35392, Giessen, Germany
| | - Eugen Petcu
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, 11568, USA
- Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY, 11568, USA
| | - Ghinea Flavia Semida
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania.
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, 45147, Essen, Germany.
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania.
| |
Collapse
|
6
|
Li X, Xu J, Yao S, Zhang N, Zhang B, Zhang Z. Targeting Drug Delivery System to Skeletal Muscles: A Comprehensive Review of Different Approaches. J Cachexia Sarcopenia Muscle 2025; 16:e13691. [PMID: 39910928 PMCID: PMC11799587 DOI: 10.1002/jcsm.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/18/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025] Open
Abstract
The skeletal muscle is one of the largest organs in the body and is responsible for the mechanical activity required for posture, movement and breathing. The effects of current pharmaceutical therapies for skeletal muscle diseases are far from satisfactory; approximately 24% of Duchenne muscular dystrophy (DMD) trials have been terminated because of unsatisfactory outcomes. The lack of a skeletal muscle-targeting strategy is a major reason for these unsuccessful trials, contributing to low efficiency and severe side effects. The development of targeting strategies for skeletal muscle-specific drug delivery has shown the potential for increasing drug concentrations in the skeletal muscle, minimising off-target effects, and thereby improving the therapeutic effects of drugs. Over the past few decades, novel methods for specifically delivering cargo to skeletal muscles have been developed. In this review, we categorise targeting methods into four types: peptides, antibodies, small molecules and aptamers. Most research has focused on peptide and antibody ligands, and there are several well-established drugs in this category; however, drawbacks such as protease degradation and immunogenicity limit their use. Aptamers and small molecules have low immunogenicity and are simple to chemically produce. However, small molecule ligands generally exhibit lower affinity because of their small size and high mobility. Aptamers are promising ligands for skeletal muscle-targeting delivery systems. Additionally, if the active site of the cargo is located inside the cell, an internalisation pathway becomes necessary. The order of internalisation ligands and targeting ligands in the complex is a crucial factor, because an inappropriate order could lead to much lower targeting and internalisation efficiencies. Moreover, ligand density also merits consideration, as increasing the density of the targeting ligands may result in steric hindrance, which could impact the accessibility of the receptor and cause enlargement of the targeted ligands. More efforts are required to optimise drug delivery systems that specifically recognise skeletal muscle, with the aim of enhancing quality of life and promoting patient well-being.
Collapse
Affiliation(s)
- Xiaofang Li
- Faculty of MedicineSchool of Chinese MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Jintao Xu
- Faculty of MedicineSchool of Chinese MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Shanshan Yao
- Faculty of MedicineSchool of Chinese MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Ning Zhang
- Faculty of MedicineSchool of Chinese MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Bao‐Ting Zhang
- Faculty of MedicineSchool of Chinese MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Zong‐Kang Zhang
- Faculty of MedicineSchool of Chinese MedicineThe Chinese University of Hong KongHong Kong SARChina
| |
Collapse
|
7
|
Volodina O, Smirnikhina S. The Future of Gene Therapy: A Review of In Vivo and Ex Vivo Delivery Methods for Genome Editing-Based Therapies. Mol Biotechnol 2025; 67:425-437. [PMID: 38363528 DOI: 10.1007/s12033-024-01070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
The development of gene therapy based on genome editing has opened up new possibilities for the treatment of human genetic disorders. This field has developed rapidly over the past few decades, some genome editing-based therapies are already in phase 3 clinical trials. However, there are several challenges to be addressed before widespread adoption of gene editing therapy becomes possible. The main obstacles in the development of such therapy are safety and efficiency, so one of the biggest issues is the delivery of genetic constructs to patient cells. Approaches in genetic cargo delivery divide into ex vivo and in vivo, which are suitable for different cases. The ex vivo approach is mainly used to edit blood cells, improve cancer therapy, and treat infectious diseases. To edit cells in organs researches choose in vivo approach. For each approach, there is a fairly large set of methods, but, unfortunately, these methods are not universal in their effectiveness and safety. The focus of this article is to discuss the current status of in vivo and ex vivo delivery methods used in genome editing-based therapy. We will discuss the main methods employed in these approaches and their applications in current gene editing treatments under development.
Collapse
Affiliation(s)
- Olga Volodina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, 115522, Russia.
| | - Svetlana Smirnikhina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, 115522, Russia
| |
Collapse
|
8
|
Moreno-Vargas LM, Prada-Gracia D. Exploring the Chemical Features and Biomedical Relevance of Cell-Penetrating Peptides. Int J Mol Sci 2024; 26:59. [PMID: 39795918 PMCID: PMC11720145 DOI: 10.3390/ijms26010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/13/2025] Open
Abstract
Cell-penetrating peptides (CPPs) are a diverse group of peptides, typically composed of 4 to 40 amino acids, known for their unique ability to transport a wide range of substances-such as small molecules, plasmid DNA, small interfering RNA, proteins, viruses, and nanoparticles-across cellular membranes while preserving the integrity of the cargo. CPPs exhibit passive and non-selective behavior, often requiring functionalization or chemical modification to enhance their specificity and efficacy. The precise mechanisms governing the cellular uptake of CPPs remain ambiguous; however, electrostatic interactions between positively charged amino acids and negatively charged glycosaminoglycans on the membrane, particularly heparan sulfate proteoglycans, are considered the initial crucial step for CPP uptake. Clinical trials have highlighted the potential of CPPs in diagnosing and treating various diseases, including cancer, central nervous system disorders, eye disorders, and diabetes. This review provides a comprehensive overview of CPP classifications, potential applications, transduction mechanisms, and the most relevant algorithms to improve the accuracy and reliability of predictions in CPP development.
Collapse
|
9
|
Gharatape A, Amanzadi B, Mohamadi F, Rafieian M, Faridi-Majidi R. Recent advances in polymeric and lipid stimuli-responsive nanocarriers for cell-based cancer immunotherapy. Nanomedicine (Lond) 2024; 19:2655-2678. [PMID: 39540464 DOI: 10.1080/17435889.2024.2416377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Conventional cancer therapy has major limitations, including non-specificity, unavoidable side effects, low specific tumor accumulation and systemic toxicity. In recent years, more effective and precise treatment methods have been developed, including cell-based immunotherapy. Carriers that can accurately and specifically target cells and equip them to combat cancer cells are particularly important for developing this therapy. As a result, attention has been drawn to smart nanocarriers that can react to specific stimuli. Thus, stimuli-responsive nanocarriers have attracted increasing attention because they can change their physicochemical properties in response to stimulus conditions, such as pH, enzymes, redox agents, hypoxia, light and temperature. This review highlights recent advances in various stimuli-responsive nanocarriers, discussing loading, targeted delivery, cellular uptake, biocompatibility and immunomodulation in cell-based immunotherapy. Finally, future challenges and perspectives regarding the possible clinical translation of nanocarriers are discussed.
Collapse
Affiliation(s)
- Alireza Gharatape
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Bentolhoda Amanzadi
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Faranak Mohamadi
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Mahdieh Rafieian
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Reza Faridi-Majidi
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
- Pharmaceutical Nanotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Ke Z, Ma Q, Ye X, Wang Y, Jin Y, Zhao X, Su Z. Peptide GLP-1 receptor agonists: From injection to oral delivery strategies. Biochem Pharmacol 2024; 229:116471. [PMID: 39127152 DOI: 10.1016/j.bcp.2024.116471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/20/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Peptide glucagon-like peptide-1 receptor agonists (GLP-1RAs) are effective drugs for treating type 2 diabetes (T2DM) and have been proven to benefit the heart and kidney. Apart from oral semaglutide, which does not require injection, other peptide GLP-1RAs need to be subcutaneously administered. However, oral semaglutide also faces significant challenges, such as low bioavailability and frequent gastrointestinal discomfort. Thus, it is imperative that advanced oral strategies for peptide GLP-1RAs need to be explored. This review mainly compares the current advantages and disadvantages of various oral delivery strategies for peptide GLP-1RAs in the developmental stage and discusses the latest research progress of peptide GLP-1RAs, providing a useful guide for the development of new oral peptide GLP-1RA drugs.
Collapse
Affiliation(s)
- Zhiqiang Ke
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Diabetes and Angiopathy, National Demonstration Center for Experimental General Medicine Education, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Qianqian Ma
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China; School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Xiaonan Ye
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China
| | - Yanlin Wang
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China
| | - Yan Jin
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China
| | - Xinyuan Zhao
- Hubei Key Laboratory of Diabetes and Angiopathy, National Demonstration Center for Experimental General Medicine Education, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China.
| | - Zhengding Su
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China; School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China.
| |
Collapse
|
11
|
Lin J, Oludare A, Jung H. Connecting dots between nucleotide biosynthesis and DNA lesion repair/bypass in cancer. Biosci Rep 2024; 44:BSR20231382. [PMID: 39189649 PMCID: PMC11427732 DOI: 10.1042/bsr20231382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024] Open
Abstract
Purine and pyrimidine nucleotides are crucial building blocks for the survival of cells, and there are layers of pathways to make sure a stable supply of them including de novo nucleotide biosynthesis. Fast-growing cells including cancer cells have high demand for nucleotide, and they highly utilize the nucleotide biosynthesis pathways. Due to the nature of the fast-growing cells, they tend to make more errors in replication compared with the normal cells. Naturally, DNA repair and DNA lesion bypass are heavily employed in cancer cells to ensure fidelity and completion of the replication without stalling. There have been a lot of drugs targeting cancer that mimic the chemical structures of the nucleobase, nucleoside, and nucleotides, and the resistance toward those drugs is a serious problem. Herein, we have reviewed some of the representative nucleotide analog anticancer agents such as 5-fluorouracil, specifically their mechanism of action and resistance is discussed. Also, we have chosen several enzymes in nucleotide biosynthesis, DNA repair, and DNA lesion bypass, and we have discussed the known and potential roles of these enzymes in maintaining genomic fidelity and cancer chemotherapy.
Collapse
Affiliation(s)
- Jackson C. Lin
- The Division of Medicinal Chemistry, School of Pharmacy, The University of Connecticut, Storrs, Connecticut 06269, U.S.A
| | - Ayobami Oludare
- The Division of Medicinal Chemistry, School of Pharmacy, The University of Connecticut, Storrs, Connecticut 06269, U.S.A
| | - Hunmin Jung
- The Division of Medicinal Chemistry, School of Pharmacy, The University of Connecticut, Storrs, Connecticut 06269, U.S.A
| |
Collapse
|
12
|
Zareei S, Khorsand B, Dantism A, Zareei N, Asgharzadeh F, Zahraee SS, Mashreghi Kashan S, Hekmatirad S, Amini S, Ghasemi F, Moradnia M, Vaghf A, Hemmatpour A, Hourfar H, Niknia S, Johari A, Salimi F, Fariborzi N, Shojaei Z, Asiaei E, Shabani H. PeptiHub: a curated repository of precisely annotated cancer-related peptides with advanced utilities for peptide exploration and discovery. Database (Oxford) 2024; 2024:baae092. [PMID: 39308247 PMCID: PMC11417155 DOI: 10.1093/database/baae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 08/07/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024]
Abstract
Peptihub (https://bioinformaticscollege.ir/peptihub/) is a meticulously curated repository of cancer-related peptides (CRPs) that have been documented in scientific literature. A diverse collection of CRPs is included in the PeptiHub, showcasing a spectrum of effects and activities. While some peptides demonstrated significant anticancer efficacy, others exhibited no discernible impact, and some even possessed alternative non-drug functionalities, including drug carrier or carcinogenic attributes. Presently, Peptihub houses 874 CRPs, subjected to evaluation across 10 distinct organism categories, 26 organs, and 438 cell lines. Each entry in the database is accompanied by easily accessible 3D conformations, obtained either experimentally or through predictive methodology. Users are provided with three search frameworks offering basic, advanced, and BLAST sequence search options. Furthermore, precise annotations of peptides enable users to explore CRPs based on their specific activities (anticancer, no effect, insignificant effect, carcinogen, and others) and their effectiveness (rate and IC50) under cancer conditions, specifically within individual organs. This unique property facilitates the construction of robust training and testing datasets. Additionally, PeptiHub offers 1141 features with the convenience of selecting the most pertinent features to address their specific research questions. Features include aaindex1 (in six main subcategories: alpha propensities, beta propensity, composition indices, hydrophobicity, physicochemical properties, and other properties), amino acid composition (Amino acid Composition and Dipeptide Composition), and Grouped Amino Acid Composition (Grouped amino acid composition, Grouped dipeptide composition, and Conjoint triad) categories. These utilities not only speed up machine learning-based peptide design but also facilitate peptide classification. Database URL: https://bioinformaticscollege.ir/peptihub/.
Collapse
Affiliation(s)
- Sara Zareei
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, South Mofateh Ave. , Tehran 15719-14911, Iran
| | - Babak Khorsand
- Department of Neurology, University of California, 200 S. Manchester Ave., Suite 206 Orange, Irvine, CA 92868-4280, USA
- Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square , Mashhad 9177948974, Iran
| | - Alireza Dantism
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal AlAhmad HWY, Tehran 14115-111, Iran
| | - Neda Zareei
- Transplant Research Center, Shiraz University of Medical Sciences, Khalili Str, Shiraz 7193711351, Iran
| | - Fereshteh Asgharzadeh
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi Sq., Mashhad 9177948564, Iran
| | - Shadi Shams Zahraee
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Dr. Shahriari Sq., Tehran 1983969411, Iran
| | - Samane Mashreghi Kashan
- Department of Medicinal Biotechnology, Faculty of Advanced Technology in Medicine, Golestan University of Medical Sciences, Shast Kola Road, Gorgan 4918936316, Iran
| | - Shirin Hekmatirad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, 16 Azar Ave, Tehran 1416753955, Iran
| | - Shila Amini
- Department of Genetics, Faculty of Advanced Science and Technology, Medical Sciences Branch, Islamic Azad University, Shariati St., Tehran 19395/1495, Iran
| | - Fatemeh Ghasemi
- Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square , Mashhad 9177948974, Iran
| | - Maryam Moradnia
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Lund BOX 117,221 00, Sweden
| | - Atena Vaghf
- Department of Medical Biotechnology, Faculty of Advanced Technologies, Shahrekord University of Medical Science, Kashani BLVD., Shahrekord 8815713471, Iran
| | - Anahid Hemmatpour
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Aalam Sq., Yazd 8915173149, Iran
| | - Hamdam Hourfar
- Bioprocess Engineering Research Group, Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology, Tehran-Karaj HWY, Tehran 14965/161, Iran
| | - Soudabeh Niknia
- Department of Biology, Kavian Institute of Higher Education, Elahiyeh Blv., Mashhad 91863-74915, Iran
| | - Ali Johari
- Department of Biology, Kavian Institute of Higher Education, Elahiyeh Blv., Mashhad 91863-74915, Iran
| | - Fatemeh Salimi
- Department of Clinical Science, Faculty of Veterinary Medicine, Razi University, Taq-e Bostan, Kermanshah 6714414971, Iran
| | - Neda Fariborzi
- Department of Biology and Biotechnology, Faculty of Molecular Biology and Genetics, University of Pavia, S.da Nuova, Pavia 65, 27100, Italy
| | - Zohreh Shojaei
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, South Mofateh Ave. , Tehran 15719-14911, Iran
| | - Elaheh Asiaei
- Systems Biotechnology Research Group, Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology, Tehran-Karaj HWY., Tehran 14965/161, Iran
| | - Hossein Shabani
- Department of Biology, Faculty of Biosciences, Tehran North Branch, Islamic Azad University, Vafadar Blv., Tehran 1651153311, Iran
| |
Collapse
|
13
|
Kachanov A, Kostyusheva A, Brezgin S, Karandashov I, Ponomareva N, Tikhonov A, Lukashev A, Pokrovsky V, Zamyatnin AA, Parodi A, Chulanov V, Kostyushev D. The menace of severe adverse events and deaths associated with viral gene therapy and its potential solution. Med Res Rev 2024; 44:2112-2193. [PMID: 38549260 DOI: 10.1002/med.22036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 08/09/2024]
Abstract
Over the past decade, in vivo gene replacement therapy has significantly advanced, resulting in market approval of numerous therapeutics predominantly relying on adeno-associated viral vectors (AAV). While viral vectors have undeniably addressed several critical healthcare challenges, their clinical application has unveiled a range of limitations and safety concerns. This review highlights the emerging challenges in the field of gene therapy. At first, we discuss both the role of biological barriers in viral gene therapy with a focus on AAVs, and review current landscape of in vivo human gene therapy. We delineate advantages and disadvantages of AAVs as gene delivery vehicles, mostly from the safety perspective (hepatotoxicity, cardiotoxicity, neurotoxicity, inflammatory responses etc.), and outline the mechanisms of adverse events in response to AAV. Contribution of every aspect of AAV vectors (genomic structure, capsid proteins) and host responses to injected AAV is considered and substantiated by basic, translational and clinical studies. The updated evaluation of recent AAV clinical trials and current medical experience clearly shows the risks of AAVs that sometimes overshadow the hopes for curing a hereditary disease. At last, a set of established and new molecular and nanotechnology tools and approaches are provided as potential solutions for mitigating or eliminating side effects. The increasing number of severe adverse reactions and, sadly deaths, demands decisive actions to resolve the issue of immune responses and extremely high doses of viral vectors used for gene therapy. In response to these challenges, various strategies are under development, including approaches aimed at augmenting characteristics of viral vectors and others focused on creating secure and efficacious non-viral vectors. This comprehensive review offers an overarching perspective on the present state of gene therapy utilizing both viral and non-viral vectors.
Collapse
Affiliation(s)
- Artyom Kachanov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Ivan Karandashov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Andrey Tikhonov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Vadim Pokrovsky
- Laboratory of Biochemical Fundamentals of Pharmacology and Cancer Models, Blokhin Cancer Research Center, Moscow, Russia
- Department of Biochemistry, People's Friendship University, Russia (RUDN University), Moscow, Russia
| | - Andrey A Zamyatnin
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Research, Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Vladimir Chulanov
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Infectious Diseases, Sechenov University, Moscow, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
14
|
Lopuszynski J, Wang J, Zahid M. Beyond Transduction: Anti-Inflammatory Effects of Cell Penetrating Peptides. Molecules 2024; 29:4088. [PMID: 39274936 PMCID: PMC11397606 DOI: 10.3390/molecules29174088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
One of the bottlenecks to bringing new therapies to the clinic has been a lack of vectors for delivering novel therapeutics in a targeted manner. Cell penetrating peptides (CPPs) have received a lot of attention and have been the subject of numerous developments since their identification nearly three decades ago. Known for their transduction abilities, they have generally been considered inert vectors. In this review, we present a schema for their classification, highlight what is known about their mechanism of transduction, and outline the existing literature as well as our own experience, vis a vis the intrinsic anti-inflammatory properties that certain CPPs exhibit. Given the inflammatory responses associated with viral vectors, CPPs represent a viable alternative to such vectors; furthermore, the anti-inflammatory properties of CPPs, mostly through inhibition of the NF-κB pathway, are encouraging. Much more work in relevant animal models, toxicity studies in large animal models, and ultimately human trials are needed before their potential is fully realized.
Collapse
Affiliation(s)
| | | | - Maliha Zahid
- Department of Cardiovascular Medicine, Guggenheim Gu 9-01B, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
15
|
Lubitz LJ, Haffner MP, Rieger H, Leneweit G. Increased Cellular Uptake of ApoE3- or c(RGD)-Modified Liposomes for Glioblastoma Therapy Depending on the Target Cells. Pharmaceutics 2024; 16:1112. [PMID: 39339149 PMCID: PMC11434700 DOI: 10.3390/pharmaceutics16091112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
As effective treatment of glioblastoma is still an unmet need, targeted delivery systems for efficient treatment are of utmost interest. Therefore, in this paper, surface modifications with a small peptide c(RGD) or physiological protein (ApoE3) were investigated. Cellular uptake in murine endothelial cells (bEnd.3) and different glioma cells (human U-87 MG, rat F98) was tested to elucidate possible differences and to correlate the uptake to the receptor expression. Different liposomal formulations were measured at 1 and 3 h for three lipid incubation concentrations. We calculated the liposomal uptake saturation S and the saturation half-time t1/2. An up to 9.6-fold increased uptake for ApoE3-modified liposomes, primarily in tumor cells, was found. Contrarily, c(RGD) liposomes showed a stronger increase in uptake in endothelial cells (up to 40.5-fold). The uptake of modified liposomes revealed enormous differences in S and t1/2 when comparing different tumor cell lines. However, for ApoE3-modified liposomes, we proved comparable saturation values (~25,000) for F98 cells and U-87 MG cells despite a 6-fold lower expression of LRP1 in F98 cells and a 5-fold slower uptake rate. Our findings suggest that cellular uptake of surface-modified liposomes depends more on the target structure than the ligand type, with significant differences between cell types of different origins.
Collapse
Affiliation(s)
- Larissa J. Lubitz
- ABNOBA GmbH, 75223 Niefern-Öschelbronn, Germany
- Carl Gustav Carus-Institute, 75223 Niefern-Öschelbronn, Germany
- Department of Chemical and Process Engineering, Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | | | - Harden Rieger
- ABNOBA GmbH, 75223 Niefern-Öschelbronn, Germany
- Carl Gustav Carus-Institute, 75223 Niefern-Öschelbronn, Germany
| | - Gero Leneweit
- ABNOBA GmbH, 75223 Niefern-Öschelbronn, Germany
- Carl Gustav Carus-Institute, 75223 Niefern-Öschelbronn, Germany
- Department of Chemical and Process Engineering, Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
16
|
González R, Carvalho ATP. Papain-Mediated Conjugation of Peptide Nucleic Acids to Delivery Peptides: A Density Functional Theory/Molecular Mechanics Metadynamics Study in Aqueous and Organic Solvent. J Phys Chem B 2024; 128:7500-7512. [PMID: 39052428 PMCID: PMC11317979 DOI: 10.1021/acs.jpcb.4c02294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Enzymatic peptide synthesis is a powerful alternative to solid-phase methods, as enzymes can have high regio- and stereoselectivity and high yield and require mild reaction conditions. This is beneficial in formulation research due to the rise of nucleic acid therapies. Peptide nucleic acids (PNAs) have a high affinity toward DNA and RNA, and their solubility and cellular delivery can be improved via conjugation to peptides. Here, we designed and assessed the viability of the papain enzyme to conjugate four PNA-peptide models in water and an organic solvent using QM/MM metadynamics. We found that the reactions in water yield better results, where three conjugates could potentially be synthesized by the enzyme, with the first transition state as the rate-limiting step, with an associated energy of 14.53 kcal mol-1, although with a slight endergonic profile. The results highlight the importance of considering the enzyme pockets and different substrate acceptivities and contribute to developing greener, direct, and precise synthetic routes for nucleic acid-based therapies. By exploring the enzyme's potential in conjunction with chemical synthesis, current protocols can be simplified for the synthesis of longer nucleic acids and peptide sequences (and, by extension, proteins) from smaller oligo or peptide blocks.
Collapse
Affiliation(s)
- Ricardo
D. González
- CNC-UC
− Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
- CIBB
− Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
- Institute
for Interdisciplinary Research, Doctoral Programme in Experimental
Biology and Biomedicine (PDBEB), University
of Coimbra, Coimbra 3030-789, Portugal
| | - Alexandra T. P. Carvalho
- CNC-UC
− Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
- CIBB
− Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
- Almac
Sciences, Department of Biocatalysis and Isotope Chemistry, Almac House, 20 Seagoe Industrial Estate ,Craigavon, Northern Ireland BT63 5QD, United Kingdom
| |
Collapse
|
17
|
Abou Madawi NA, Darwish ZE, Omar EM. Targeted gene therapy for cancer: the impact of microRNA multipotentiality. Med Oncol 2024; 41:214. [PMID: 39088082 PMCID: PMC11294399 DOI: 10.1007/s12032-024-02450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
Cancer is a life-threatening disease and its management is difficult due to its complex nature. Cancer is characterized by genomic instability and tumor-associated inflammation of the supporting stoma. With the advances in omics science, a treatment strategy for cancer has emerged, which is based on targeting cancer-driving molecules, known as targeted therapy. Gene therapy, a form of targeted therapy, is the introduction of nucleic acids into living cells to replace a defective gene, promote or repress gene expression to treat a disease. MicroRNAs (miRNAs) are non-coding RNAs (ncRNAs) that regulate gene expression and thus are involved in physiological processes like cell proliferation, differentiation, and cell death. miRNAs control the actions of many genes. They are deregulated in cancer and their abnormal expression influences genetic and epigenetic alterations inducing carcinogenesis. In this review, we will explain the role of miRNAs in normal and abnormal gene expression and their usefulness in monitoring cancer patients. Besides, we will discuss miRNA-based therapy as a method of gene therapy and its impact on the success of cancer management.
Collapse
Affiliation(s)
- Nourhan A Abou Madawi
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, 21521, Alexandria, Egypt.
| | - Zeinab E Darwish
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, 21521, Alexandria, Egypt
| | - Enas M Omar
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, 21521, Alexandria, Egypt
| |
Collapse
|
18
|
Genna V, Reyes-Fraile L, Iglesias-Fernandez J, Orozco M. Nucleic acids in modern molecular therapies: A realm of opportunities for strategic drug design. Curr Opin Struct Biol 2024; 87:102838. [PMID: 38759298 DOI: 10.1016/j.sbi.2024.102838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024]
Abstract
RNA vaccines have made evident to society what was already known by the scientific community: nucleic acids will be the "drugs of the future." By modifying the genome, interfering in transcription or translation, and by introducing new catalysts into the cell or by mimicking antibody effects, nucleic acids can generate therapeutic activities that are not accessible by any other therapeutic agents. There are, however, challenges that need to be solved in the next few years to make nucleic acids usable in a wide range of therapeutic scenarios. This review illustrates how simulation methods can help achieve this goal.
Collapse
Affiliation(s)
- Vito Genna
- NBD|Nostrum Biodiscovery, Josep Tarradellas 8-10, Barcelona 08019, Spain. https://twitter.com/_VitoGenna_
| | - Laura Reyes-Fraile
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain; Sixfold Bioscience Ltd, Translational & Innovation Hub, 84 Wood Ln, London W12 0BZ, United Kingdom
| | | | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain; Department of Biochemistry and Biomedicine, University of Barcelona, Barcelona 08028, Spain.
| |
Collapse
|
19
|
Faria R, Vivès E, Boisguérin P, Descamps S, Sousa Â, Costa D. Upgrading Mitochondria-Targeting Peptide-Based Nanocomplexes for Zebrafish In Vivo Compatibility Assays. Pharmaceutics 2024; 16:961. [PMID: 39065658 PMCID: PMC11281276 DOI: 10.3390/pharmaceutics16070961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The lack of effective delivery systems has slowed the development of mitochondrial gene therapy. Delivery systems based on cell-penetrating peptides (CPPs) like the WRAP (tryptophan and arginine-rich peptide) family conjugated with a mitochondrial targeting sequence (MTS) have emerged as adequate carriers to mediate gene expression into the mitochondria. In this work, we performed the PEGylation of WRAP/pDNA nanocomplexes and compared them with previously analyzed nanocomplexes such as (KH)9/pDNA and CpMTP/pDNA. All nanocomplexes exhibited nearly homogeneous sizes between 100 and 350 nm in different environments. The developed complexes were biocompatible and hemocompatible to both human astrocytes and lung smooth muscle cells, ensuring in vivo safety. The nanocomplexes displayed mitochondria targeting ability, as through transfection they preferentially accumulate into the mitochondria of astrocytes and muscle cells to the detriment of cytosol and lysosomes. Moreover, the transfection of these cells with MTS-CPP/pDNA complexes produced significant levels of mitochondrial protein ND1, highlighting their efficient role as gene delivery carriers toward mitochondria. The positive obtained data pave the way for in vivo research. Using confocal microscopy, the cellular internalization capacity of these nanocomplexes in the zebrafish embryo model was assessed. The peptide-based nanocomplexes were easily internalized into zebrafish embryos, do not cause harmful or toxic effects, and do not affect zebrafish's normal development and growth. These promising results indicate that MTS-CPP complexes are stable nanosystems capable of internalizing in vivo models and do not present associated toxicity. This work, even at an early stage, offers good prospects for continued in vivo zebrafish research to evaluate the performance of nanocomplexes for mitochondrial gene therapy.
Collapse
Affiliation(s)
- Rúben Faria
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.F.); (Â.S.)
| | - Eric Vivès
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (E.V.); (P.B.)
| | - Prisca Boisguérin
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (E.V.); (P.B.)
| | - Simon Descamps
- CRBM-CNRS, Cell Biology Research of Montpellier, UMR5237, 34293 Montpellier, France
| | - Ângela Sousa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.F.); (Â.S.)
| | - Diana Costa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.F.); (Â.S.)
| |
Collapse
|
20
|
Manteghi M, Can O, Kocagoz T. Peptosome: A New Efficient Transfection Tool as an Alternative to Liposome. Int J Mol Sci 2024; 25:6918. [PMID: 39000028 PMCID: PMC11241524 DOI: 10.3390/ijms25136918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Gene therapy is one of the most promising techniques for treating genetic diseases and cancer. The current most important problem in gene therapy is gene delivery. Viral and non-viral vectors like liposomes, used for gene delivery, have many limitations. We have developed new hybrid peptides by combining cell-penetrating peptides (CPPs) with the DNA-binding domain of the human histone H4 protein. These small peptides bind to DNA molecules through their histone domain, leaving the CPP part free and available for binding and penetration into cells, forming complexes that we named "peptosomes". We evaluated the transfection efficiency of several hybrid peptides by delivering a plasmid carrying the green fluorescent protein gene and following its expression by fluorescent microscopy. Among several hybrid peptides, TM3 achieved a gene delivery efficiency of 76%, compared to 52% for Lipofectamine 2000. TM3 peptosomes may become important gene delivery tools with several advantages over current gene delivery agents.
Collapse
Affiliation(s)
- Maliheh Manteghi
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey;
| | - Ozge Can
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey;
| | - Tanil Kocagoz
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey;
- Department of Medical Microbiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| |
Collapse
|
21
|
Singh IR, Aggarwal N, Srivastava S, Panda JJ, Mishra J. Small Peptide-Based Nanodelivery Systems for Cancer Therapy and Diagnosis. J Pharmacol Exp Ther 2024; 390:30-44. [PMID: 37977815 DOI: 10.1124/jpet.123.001845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023] Open
Abstract
Developing nano-biomaterials with tunable topology, size, and surface characteristics has shown tremendously favorable benefits in various biologic and clinical applications. Among various nano-biomaterials, peptide-based drug delivery systems offer multiple merits over other synthetic systems due to their enhanced bio- and cytocompatibility and desirable biochemical and biophysical properties. Currently, around 100 peptide-based drugs are clinically available for numerous therapeutic purposes. In conjugation with chemotherapeutic moieties, peptides demonstrate a remarkable ability to reduce nonspecific drug effects by improving drug targetability at cancer sites. This review encompasses a wide-ranging role played by different peptide-based nanostructures in cancer theranostics. Section 1 introduces the rising concern about cancer as a disease and further describes peptide-based nanomaterials as biomedical agents to tackle the ailment. The subsequent section explores the mechanistic pathways behind the self-assembly of peptides to form hierarchically distinct assemblies. The crux of our review lies in an exhaustive exploration of the applications of various types of peptide-based nanostructures in cancer therapy and diagnosis. SIGNIFICANCE STATEMENT: Peptide-based drug delivery systems possess superior biocompatibility, biochemical, and biophysical properties compared to other synthetic alternatives. The development of these nano-biomaterials with customizable topology, size, and surface characteristics have shown promising outcomes in biomedical contexts. Peptides in conjunction with chemotherapeutic agents exhibit the ability to enhance drug targetability at cancer sites, reducing nonspecific drug effects. This comprehensive review emphasizes the pivotal role of diverse peptide-based nanostructures as cancer theranostics, elucidating their potential in revolutionizing cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Imocha Rajkumar Singh
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India (I.R.S., N.A., S.S., J.J.P.) and School of Biosciences, RIMT University, Mandi Gobindgarh, India (J.M.)
| | - Nidhi Aggarwal
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India (I.R.S., N.A., S.S., J.J.P.) and School of Biosciences, RIMT University, Mandi Gobindgarh, India (J.M.)
| | - Swapnil Srivastava
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India (I.R.S., N.A., S.S., J.J.P.) and School of Biosciences, RIMT University, Mandi Gobindgarh, India (J.M.)
| | - Jiban Jyoti Panda
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India (I.R.S., N.A., S.S., J.J.P.) and School of Biosciences, RIMT University, Mandi Gobindgarh, India (J.M.)
| | - Jibanananda Mishra
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India (I.R.S., N.A., S.S., J.J.P.) and School of Biosciences, RIMT University, Mandi Gobindgarh, India (J.M.)
| |
Collapse
|
22
|
Milewska S, Sadowska A, Stefaniuk N, Misztalewska-Turkowicz I, Wilczewska AZ, Car H, Niemirowicz-Laskowska K. Tumor-Homing Peptides as Crucial Component of Magnetic-Based Delivery Systems: Recent Developments and Pharmacoeconomical Perspective. Int J Mol Sci 2024; 25:6219. [PMID: 38892406 PMCID: PMC11172452 DOI: 10.3390/ijms25116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
According to data from the World Health Organization (WHO), cancer is considered to be one of the leading causes of death worldwide, and new therapeutic approaches, especially improved novel cancer treatment regimens, are in high demand. Considering that many chemotherapeutic drugs tend to have poor pharmacokinetic profiles, including rapid clearance and limited on-site accumulation, a combined approach with tumor-homing peptide (THP)-functionalized magnetic nanoparticles could lead to remarkable improvements. This is confirmed by an increasing number of papers in this field, showing that the on-target peptide functionalization of magnetic nanoparticles improves their penetration properties and ensures tumor-specific binding, which results in an increased clinical response. This review aims to highlight the potential applications of THPs in combination with magnetic carriers across various fields, including a pharmacoeconomic perspective.
Collapse
Affiliation(s)
- Sylwia Milewska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Natalia Stefaniuk
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | | | - Agnieszka Z. Wilczewska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (I.M.-T.); (A.Z.W.)
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Katarzyna Niemirowicz-Laskowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| |
Collapse
|
23
|
Xiang K, Li Y, Cong H, Yu B, Shen Y. Peptide-based non-viral gene delivery: A comprehensive review of the advances and challenges. Int J Biol Macromol 2024; 266:131194. [PMID: 38554914 DOI: 10.1016/j.ijbiomac.2024.131194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Gene therapy is the most effective treatment option for diseases, but its effectiveness is affected by the choice and design of gene carriers. The genes themselves have to pass through multiple barriers in order to enter the cell and therefore require additional vectors to carry them inside the cell. In gene therapy, peptides have unique properties and potential as gene carriers, which can effectively deliver genes into specific cells or tissues, protect genes from degradation, improve gene transfection efficiency, and enhance gene targeting and biological responsiveness. This paper reviews the research progress of peptides and their derivatives in the field of gene delivery recently, describes the obstacles encountered by foreign materials to enter the interior of the cell, and introduces the following classes of functional peptides that can carry materials into the interior of the cell, and assist in transmembrane translocation of carriers, thus breaking through endosomal traps to enable successful entry of genetic materials into the nucleus of the cell. The paper also discusses the combined application of peptide vectors with other vectors to enhance its transfection ability, explores current challenges encountered by peptide vectors, and looks forward to future developments in the field.
Collapse
Affiliation(s)
- Kai Xiang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bio nanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
24
|
Rehan F, Zhang M, Fang J, Greish K. Therapeutic Applications of Nanomedicine: Recent Developments and Future Perspectives. Molecules 2024; 29:2073. [PMID: 38731563 PMCID: PMC11085487 DOI: 10.3390/molecules29092073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The concept of nanomedicine has evolved significantly in recent decades, leveraging the unique phenomenon known as the enhanced permeability and retention (EPR) effect. This has facilitated major advancements in targeted drug delivery, imaging, and individualized therapy through the integration of nanotechnology principles into medicine. Numerous nanomedicines have been developed and applied for disease treatment, with a particular focus on cancer therapy. Recently, nanomedicine has been utilized in various advanced fields, including diagnosis, vaccines, immunotherapy, gene delivery, and tissue engineering. Multifunctional nanomedicines facilitate concurrent medication delivery, therapeutic monitoring, and imaging, allowing for immediate responses and personalized treatment plans. This review concerns the major advancement of nanomaterials and their potential applications in the biological and medical fields. Along with this, we also mention the various clinical translations of nanomedicine and the major challenges that nanomedicine is currently facing to overcome the clinical translation barrier.
Collapse
Affiliation(s)
- Farah Rehan
- Department of Molecular Medicine, Al-Jawhara Centre for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain;
| | - Mingjie Zhang
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan;
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jun Fang
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan;
| | - Khaled Greish
- Department of Molecular Medicine, Al-Jawhara Centre for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain;
| |
Collapse
|
25
|
Kwak SB, Kim SJ, Kang YJ, Lee WW, Huh J, Park JW. Development of a rectally administrable Dnase1 to treat septic shock by targeting NETs. Life Sci 2024; 342:122526. [PMID: 38417543 DOI: 10.1016/j.lfs.2024.122526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/11/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
AIMS Neutrophil extracellular trap (NET), which is formed by DNA threads, induces septic shock by aggravating systemic inflammation. An intravenous administration of deoxyribonuclease is regarded as a compelling modality for treating septic shock. However, alternative routes should be chosen when cutaneous veins are all collapsed due to hypotension. In this study, we genetically engineered this enzyme to develop a rectal suppository formulation to treat septic shock. MAIN METHODS Dnase1 was mutated at two amino acid residues to increase its stability in the blood and fused with a cell-penetrating peptide CR8 to increase its absorption through the rectal mucosa, which is designated AR-CR8. The life-saving effect of AR-CR8 was evaluated in a LPS-induced shock mouse model. KEY FINDINGS AR-CR8 was shown to remove NETs effectively in human neutrophils. When AR-CR8 was administered to the mouse rectum, the deoxyribonuclease activity in the mouse serum was significantly increased. In the LPS-induced shock model, 90 % of the control mice died over 72 h after LPS injection. In contrast, the rectal administration of AR-CR8 showed a mortality rate of 30 % by 72 h after LPS injection. The Log-rank test revealed that the survival rate is significantly higher in the AR-CR8 group. The NET markers in the mouse serum were enhanced by LPS, and significantly downregulated in the AR-CR8 group. These results suggest that AR-CR8 ameliorates LPS-induced shock by degrading NETs. SIGNIFICANCE The engineered DNASE1 could be developed as a rectal suppository formulation to treat septic shock urgently at out-of-hospital places where no syringe is available.
Collapse
Affiliation(s)
- Su-Bin Kwak
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea
| | - Sang-Jin Kim
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea
| | - Yeon Jun Kang
- Laboratory of Autoimmunity and Inflammation, Department of Biomedical Sciences, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation, Department of Biomedical Sciences, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea
| | - June Huh
- Department of Chemical and Biological Engineering, Korea University, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jong-Wan Park
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea; Department of Biomedical Science, BK21-plus education program, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea; Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Daehak-ro 103, Jongno-gu, Seoul 03080, Republic of Korea.
| |
Collapse
|
26
|
Zhang W, Xu H, Li C, Han B, Zhang Y. Exploring Chinese herbal medicine for ischemic stroke: insights into microglia and signaling pathways. Front Pharmacol 2024; 15:1333006. [PMID: 38318134 PMCID: PMC10838993 DOI: 10.3389/fphar.2024.1333006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Ischemic stroke is a prevalent clinical condition affecting the central nervous system, characterized by a high mortality and disability rate. Its incidence is progressively rising, particularly among younger individuals, posing a significant threat to human well-being. The activation and polarization of microglia, leading to pro-inflammatory and anti-inflammatory responses, are widely recognized as pivotal factors in the pathogenesis of cerebral ischemia and reperfusion injury. Traditional Chinese herbal medicines (TCHMs) boasts a rich historical background, notable efficacy, and minimal adverse effects. It exerts its effects by modulating microglia activation and polarization, suppressing inflammatory responses, and ameliorating nerve injury through the mediation of microglia and various associated pathways (such as NF-κB signaling pathway, Toll-like signaling pathway, Notch signaling pathway, AMPK signaling pathway, MAPK signaling pathway, among others). Consequently, this article focuses on microglia as a therapeutic target, reviewing relevant pathway of literature on TCHMs to mitigate neuroinflammation and mediate IS injury, while also exploring research on drug delivery of TCHMs. The ultimate goal is to provide new insights that can contribute to the clinical management of IS using TCHMs.
Collapse
Affiliation(s)
| | | | | | - Bingbing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yimin Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
27
|
Anfray C, Varela CF, Ummarino A, Maeda A, Sironi M, Gandoy S, Brea J, Loza MI, León S, Calvo A, Correa J, Fernandez-Megia E, Alonso MJ, Allavena P, Crecente-Campo J, Andón FT. Polymeric nanocapsules loaded with poly(I:C) and resiquimod to reprogram tumor-associated macrophages for the treatment of solid tumors. Front Immunol 2024; 14:1334800. [PMID: 38259462 PMCID: PMC10800412 DOI: 10.3389/fimmu.2023.1334800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Background In the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play a key immunosuppressive role that limits the ability of the immune system to fight cancer. Toll-like receptors (TLRs) ligands, such as poly(I:C) or resiquimod (R848) are able to reprogram TAMs towards M1-like antitumor effector cells. The objective of our work has been to develop and evaluate polymeric nanocapsules (NCs) loaded with poly(I:C)+R848, to improve drug stability and systemic toxicity, and evaluate their targeting and therapeutic activity towards TAMs in the TME of solid tumors. Methods NCs were developed by the solvent displacement and layer-by-layer methodologies and characterized by dynamic light scattering and nanoparticle tracking analysis. Hyaluronic acid (HA) was chemically functionalized with mannose for the coating of the NCs to target TAMs. NCs loaded with TLR ligands were evaluated in vitro for toxicity and immunostimulatory activity by Alamar Blue, ELISA and flow cytometry, using primary human monocyte-derived macrophages. For in vivo experiments, the CMT167 lung cancer model and the MN/MCA1 fibrosarcoma model metastasizing to lungs were used; tumor-infiltrating leukocytes were evaluated by flow cytometry and multispectral immunophenotyping. Results We have developed polymeric NCs loaded with poly(I:C)+R848. Among a series of 5 lead prototypes, protamine-NCs were selected based on their physicochemical properties (size, charge, stability) and in vitro characterization, showing good biocompatibility on primary macrophages and ability to stimulate their production of T-cell attracting chemokines (CXCL10, CCL5) and to induce M1-like macrophages cytotoxicity towards tumor cells. In mouse tumor models, the intratumoral injection of poly(I:C)+R848-protamine-NCs significantly prevented tumor growth and lung metastasis. In an orthotopic murine lung cancer model, the intravenous administration of poly(I:C)+R848-prot-NCs, coated with an additional layer of HA-mannose to improve TAM-targeting, resulted in good antitumoral efficacy with no apparent systemic toxicity. While no significant alterations were observed in T cell numbers (CD8, CD4 or Treg), TAM-reprogramming in treated mice was confirmed by the relative decrease of interstitial versus alveolar macrophages, having higher CD86 expression but lower CD206 and Arg1 expression in the same cells, in treated mice. Conclusion Mannose-HA-protamine-NCs loaded with poly(I:C)+R848 successfully reprogram TAMs in vivo, and reduce tumor progression and metastasis spread in mouse tumors.
Collapse
Affiliation(s)
- Clément Anfray
- Laboratory of Cellular Immunology, IRCCS Humanitas Research Hospital, Rozzano-Milan, Italy
| | - Carmen Fernández Varela
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Aldo Ummarino
- Laboratory of Cellular Immunology, IRCCS Humanitas Research Hospital, Rozzano-Milan, Italy
| | - Akihiro Maeda
- Laboratory of Cellular Immunology, IRCCS Humanitas Research Hospital, Rozzano-Milan, Italy
| | - Marina Sironi
- Laboratory of Cellular Immunology, IRCCS Humanitas Research Hospital, Rozzano-Milan, Italy
| | - Sara Gandoy
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- BioFarma Research Group, CIMUS, Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose Brea
- BioFarma Research Group, CIMUS, Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Isabel Loza
- BioFarma Research Group, CIMUS, Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sergio León
- Navarra Institute for Health Research (IdiSNA), Program in Solid Tumors, Center for Applied Medical Research (CIMA), Department of Pathology and Histology, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Alfonso Calvo
- Navarra Institute for Health Research (IdiSNA), Program in Solid Tumors, Center for Applied Medical Research (CIMA), Department of Pathology and Histology, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Juan Correa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eduardo Fernandez-Megia
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Paola Allavena
- Laboratory of Cellular Immunology, IRCCS Humanitas Research Hospital, Rozzano-Milan, Italy
| | - José Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Fernando Torres Andón
- Laboratory of Cellular Immunology, IRCCS Humanitas Research Hospital, Rozzano-Milan, Italy
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Oncology Department, Complexo Hospitalario de A Coruña (CHUAC), A Coruña, Spain
| |
Collapse
|
28
|
Thomas J, Sun J, Montclare JK. Constructing Nucleic Acid Delivering Lipoproteoplexes from Coiled-Coil Supercharged Protein and Cationic Liposomes. Methods Mol Biol 2024; 2720:191-207. [PMID: 37775667 DOI: 10.1007/978-1-0716-3469-1_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The safe and efficient delivery of nucleic acids is crucial for both clinical applications of gene therapy and pre-clinical laboratory research. Such delivery strategies rely on vectors to condense nucleic acid payloads and escort them into the cell without being degraded in the extracellular environment; however, the construction and utilization of these vectors can be difficult and time-consuming. Here, we detail the steps involved in the rapid, laboratory-scale production and assessment of a versatile, nucleic acid delivery vehicle, known as the lipoproteoplex. In this chapter, we outline: (1) the recombinant synthesis and subsequent purification of the supercharged coiled-coil protein component known as N8; (2) the synthesis of cationic liposomes from dioleoyl-3-trimethylammonium propane (DOTAP) and sodium cholate; (3) and finally a protocol for the delivery of a model siRNA cargo into a cultured cell line.
Collapse
Affiliation(s)
- Joseph Thomas
- Department of Biomedical Engineering, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA
| | - Jonathan Sun
- Department of Chemistry, New York University, New York, NY, USA
- Department of Radiology, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA.
- Department of Chemistry, New York University, New York, NY, USA.
- Department of Radiology, State University of New York Downstate Medical Center, Brooklyn, NY, USA.
- Department of Biomaterials, New York University College of Dentistry, New York, NY, USA.
| |
Collapse
|
29
|
Moço PD, Dash S, Kamen AA. Enhancement of adeno-associated virus serotype 6 transduction into T cells with cell-penetrating peptides. J Gene Med 2024; 26:e3627. [PMID: 37957034 DOI: 10.1002/jgm.3627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/28/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Adeno-associated viruses (AAVs) are gaining interest in the development of cellular immunotherapy. Compared to other viral vectors, AAVs can reduce the risk of insertional oncogenesis. AAV serotype 6 (AAV6) shows the highest efficiency for transducing T cells. Nevertheless, a multiplicity of infection (MOI) of up to one million viral genomes per cell is required to transduce the target cells effectively. Cell-penetrating peptides (CPPs) are short, positively charged peptides that easily translocate the plasma membranes and can facilitate the cellular uptake of a wide variety of cargoes, including small molecules, nucleic acids, drugs, proteins and viral vectors. METHODS The present study evaluated five CPPs (Antp, TAT-HA2, LAH4, TAT1 and TAT2) on their effects on enhancing transduction of AAV6 packaging a green fluorescent protein transgene into Jurkat T cell line. RESULTS Vector incubation with peptides TAT-HA2 and LAH4 at a final concentration of 0.2 mm resulted in an approximately two-fold increase in transduced cells. At the lowest MOI tested (1.25 × 104 ), using LAH4 resulted in a 10-fold increase in transduction efficiency. The peptide LAH4 increased the uptake of AAV6 viral particles in both Jurkat cells and mouse primary T cells. Regardless of the large size of the AAV6-LAH4 complexes, their internalization does not appear to depend on macropinocytosis. CONCLUSIONS Overall, the present study reports an approach to significantly improve the delivery of transgenes into T cells using AAV6 vectors. Notably, the peptides TAT-HA2 and LAH4 contribute to improving the use of AAV6 as a gene delivery vector for the engineering of T cells.
Collapse
Affiliation(s)
- Pablo D Moço
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Shantoshini Dash
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Amine A Kamen
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
30
|
González RD, Simões S, Ferreira L, Carvalho ATP. Designing Cell Delivery Peptides and SARS-CoV-2-Targeting Small Interfering RNAs: A Comprehensive Bioinformatics Study with Generative Adversarial Network-Based Peptide Design and In Vitro Assays. Mol Pharm 2023; 20:6079-6089. [PMID: 37941379 DOI: 10.1021/acs.molpharmaceut.3c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Nucleic acid technologies with designed intracellular delivery systems are some of the most promising therapies of the future. Small interfering (si)RNAs inhibit gene expression and protein synthesis and may complement current vaccines with faster design and production. Although successful delivery remains an issue, delivery peptides may help to fill this gap. Here, we address this issue by applying bioinformatic approaches to design new putative cell delivery peptides and siRNAs for COVID-19 variants and other related viral diseases. Of the 29,880 RNA sequences analyzed, 62 were identified in silico as able to target the virus mRNA sequence, and from the 9,984 peptide sequences analyzed, 10 were selected as delivery peptides. From the latter, we further performed in vitro studies of the two best-ranked peptides and compared them with the broadly used TAT delivery peptide. One of them, seq5, displayed better internalization results with about double intensity signal compared to TAT after a 1 h incubation time in GFP-HeLa cells. This peptide has, thus, the features of a delivery peptide and could be used for cargo intracellular delivery.
Collapse
Affiliation(s)
- Ricardo D González
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Susana Simões
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Lino Ferreira
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - Alexandra T P Carvalho
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, Almac House, 20 Seagoe Industrial Estate, Craigavon, Northern Ireland BT63 5QD, United Kingdom
| |
Collapse
|
31
|
Sahagun D, Zahid M. Cardiac-Targeting Peptide: From Discovery to Applications. Biomolecules 2023; 13:1690. [PMID: 38136562 PMCID: PMC10741768 DOI: 10.3390/biom13121690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/31/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Despite significant strides in prevention, diagnosis, and treatment, cardiovascular diseases remain the number one cause of mortality in the United States, with rates climbing at an alarming rate in the developing world. Targeted delivery of therapeutics to the heart has been a lofty goal to achieve with strategies ranging from direct intra-cardiac or intra-pericardial delivery, intra-coronary infusion, to adenoviral, lentiviral, and adeno-associated viral vectors which have preference, if not complete cardio-selectivity, for cardiac tissue. Cell-penetrating peptides (CPP) are 5-30-amino-acid-long peptides that are able to breach cell membrane barriers while carrying cargoes up to several times their size, in an intact functional form. Identified nearly three decades ago, the first of these CPPs came from the HIV coat protein transactivator of transcription. Although a highly efficient CPP, its clinical utility is limited by its robust ability to cross any cell membrane barrier, including crossing the blood-brain barrier and transducing neuronal tissue non-specifically. Several strategies have been utilized to identify cell- or tissue-specific CPPs, one of which is phage display. Using this latter technique, we identified a cardiomyocyte-targeting peptide (CTP) more than a decade ago, a finding that has been corroborated by several independent labs across the world that have utilized CTP for a myriad of different purposes in pre-clinical animal models. The goal of this publication is to provide a comprehensive review of the identification, validation, and application of CTP, and outline its potential in diagnostic and therapeutic applications especially in the field of targeted RNA interference.
Collapse
Affiliation(s)
| | - Maliha Zahid
- Department of Cardiovascular Medicine, Mayo Clinic, Guggenheim Gu9-01B, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA;
| |
Collapse
|
32
|
Zhu H, Luo H, Chang R, Yang Y, Liu D, Ji Y, Qin H, Rong H, Yin J. Protein-based delivery systems for RNA delivery. J Control Release 2023; 363:253-274. [PMID: 37741460 DOI: 10.1016/j.jconrel.2023.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
RNA-based therapeutics have emerged as promising approaches to modulate gene expression and generate therapeutic proteins or antigens capable of inducing immune responses to treat a variety of diseases, such as infectious diseases, cancers, immunologic disorders, and genetic disorders. However, the efficient delivery of RNA molecules into cells poses significant challenges due to their large molecular weight, negative charge, and susceptibility to degradation by RNase enzymes. To overcome these obstacles, viral and non-viral vectors have been developed, including lipid nanoparticles, viral vectors, proteins, dendritic macromolecules, among others. Among these carriers, protein-based delivery systems have garnered considerable attention due to their potential to address specific issues associated with nanoparticle-based systems, such as liver accumulation and immunogenicity. This review provides an overview of currently marketed RNA drugs, underscores the significance of RNA delivery vector development, delineates the essential characteristics of an ideal RNA delivery vector, and introduces existing protein carriers for RNA delivery. By offering valuable insights, this review aims to serve as a reference for the future development of protein-based delivery vectors for RNA therapeutics.
Collapse
Affiliation(s)
- Haichao Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hong Luo
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Ruilong Chang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yifan Yang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Ji
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, No. 206, Sixian Street, Baiyun District, Guiyang City 550014, Guizhou Province, China.
| | - Haibo Rong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China.
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
33
|
Timotievich ED, Shilovskiy IP, Khaitov MR. Cell-Penetrating Peptides as Vehicles for Delivery of Therapeutic Nucleic Acids. Mechanisms and Application in Medicine. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1800-1817. [PMID: 38105200 DOI: 10.1134/s0006297923110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 12/19/2023]
Abstract
Currently, nucleic acid therapeutics are actively developed for the treatment and prophylactic of metabolic disorders and oncological, inflammatory, and infectious diseases. A growing number of approved nucleic acid-based drugs evidences a high potential of gene therapy in medicine. Therapeutic nucleic acids act in the cytoplasm, which makes the plasma membrane the main barrier for the penetration of nucleic acid-based drugs into the cell and requires development of special vehicles for their intracellular delivery. The optimal carrier should not only facilitate internalization of nucleic acids, but also exhibit no toxic effects, ensure stabilization of the cargo molecules, and be suitable for a large-scale and low-cost production. Cell-penetrating peptides (CPPs), which match all these requirements, were found to be efficient and low-toxic carriers of nucleic acids. CPPs are typically basic peptides with a positive charge at physiological pH that can form nanostructures with negatively charged nucleic acids. The prospects of CPPs as vehicles for the delivery of therapeutic nucleic acids have been demonstrated in numerous preclinical studies. Some CPP-based drugs had successfully passed clinical trials and were implemented into medical practice. In this review, we described different types of therapeutic nucleic acids and summarized the data on the use of CPPs for their intracellular delivery, as well as discussed, the mechanisms of CPP uptake by the cells, as understanding of these mechanisms can significantly accelerate the development of new gene therapy approaches.
Collapse
Affiliation(s)
- Ekaterina D Timotievich
- Institute of Immunology, National Research Center, Federal Medical-Biological Agency of the Russian Federation, Moscow, 115522, Russia
| | - Igor P Shilovskiy
- Institute of Immunology, National Research Center, Federal Medical-Biological Agency of the Russian Federation, Moscow, 115522, Russia.
| | - Musa R Khaitov
- Institute of Immunology, National Research Center, Federal Medical-Biological Agency of the Russian Federation, Moscow, 115522, Russia.
| |
Collapse
|
34
|
Mavi AK, Kumar M, Singh A, Prajapati MK, Khabiya R, Maru S, Kumar D. Progress in Non‐Viral Delivery of Nucleic Acid. INTEGRATION OF BIOMATERIALS FOR GENE THERAPY 2023:281-322. [DOI: 10.1002/9781394175635.ch10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
35
|
Cheng Q, Wang T, Zhang J, Tian L, Zeng C, Meng Z, Zhang C, Meng Q. Multifunctional gene delivery vectors containing different liver-targeting fragments for specifically transfecting hepatocellular carcinoma (HCC) cells. J Mater Chem B 2023; 11:9721-9731. [PMID: 37791430 DOI: 10.1039/d3tb01866k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Gene therapy is a promising strategy for HCC treatment, but it commonly faces the problem of low specificity in gene transfection. In this study, we designed and synthesized a series of peptide-based gene delivery vectors (H-01 to H-18) containing varied HCC cell-targeting fragments for specifically binding different receptors highly expressed on HCC cell membranes. The physicochemical properties of peptide vectors or peptide/DNA complexes were characterized, and the gene delivery abilities of peptide vectors were evaluated in HepG2 cell lines. The results showed that peptide vectors H-02 and H-09, which contained targeted fragments for ACE2 and c-Met receptors, respectively, could specifically transfect HCC cells in a highly -efficient manner in vitro. Furthermore, the liver-targeting function in vivo of Cy5.5 labeled H-02 (H-17) and H-09 (H-18) was investigated by fluorescence imaging.
Collapse
Affiliation(s)
- Qin Cheng
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
- Key laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Taoran Wang
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Jing Zhang
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
- Key laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Long Tian
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
- Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Chunlan Zeng
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Zhao Meng
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Changhao Zhang
- Key laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Qingbin Meng
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
- Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
36
|
Shchaslyvyi AY, Antonenko SV, Tesliuk MG, Telegeev GD. Current State of Human Gene Therapy: Approved Products and Vectors. Pharmaceuticals (Basel) 2023; 16:1416. [PMID: 37895887 PMCID: PMC10609992 DOI: 10.3390/ph16101416] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
In the realm of gene therapy, a pivotal moment arrived with Paul Berg's groundbreaking identification of the first recombinant DNA in 1972. This achievement set the stage for future breakthroughs. Conditions once considered undefeatable, like melanoma, pancreatic cancer, and a host of other ailments, are now being addressed at their root cause-the genetic level. Presently, the gene therapy landscape stands adorned with 22 approved in vivo and ex vivo products, including IMLYGIC, LUXTURNA, Zolgensma, Spinraza, Patisiran, and many more. In this comprehensive exploration, we delve into a rich assortment of 16 drugs, from siRNA, miRNA, and CRISPR/Cas9 to DNA aptamers and TRAIL/APO2L, as well as 46 carriers, from AAV, AdV, LNPs, and exosomes to naked mRNA, sonoporation, and magnetofection. The article also discusses the advantages and disadvantages of each product and vector type, as well as the current challenges faced in the practical use of gene therapy and its future potential.
Collapse
Affiliation(s)
- Aladdin Y. Shchaslyvyi
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Zabolotnogo Str., 03143 Kyiv, Ukraine; (S.V.A.); (M.G.T.); (G.D.T.)
| | | | | | | |
Collapse
|
37
|
Lunde PK, Manfra O, Støle TP, Lunde M, Martinsen M, Carlson CR, Louch WE. Polyarginine Cell-Penetrating Peptides Bind and Inhibit SERCA2. Cells 2023; 12:2358. [PMID: 37830576 PMCID: PMC10571751 DOI: 10.3390/cells12192358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Cell-penetrating peptides (CPPs) are short peptide sequences that have the ability to cross the cell membrane and deliver cargo. Although it is critical that CPPs accomplish this task with minimal off-target effects, such actions have in many cases not been robustly screened. We presently investigated whether the commonly used CPPs TAT and the polyarginines Arg9 and Arg11 exert off-target effects on cellular Ca2+ homeostasis. In experiments employing myocytes and homogenates from the cardiac left ventricle or soleus muscle, we observed marked inhibition of Ca2+ recycling into the sarcoplasmic reticulum (SR) following incubation with polyarginine CPPs. In both tissues, the rate of SR Ca2+ leak remained unchanged, indicating that protracted Ca2+ removal from the cytosol stemmed from inhibition of the SR Ca2+ ATPase 2 (SERCA2). No such inhibition occurred following treatment with TAT, or in preparations from the SERCA1-expressing extensor digitorum longus muscle. Experiments in HEK cells overexpressing individual SERCA isoforms confirmed that polyarginine incubation specifically inhibited the activity of SERCA2a and 2b, but not SERCA1 or 3. The attenuation of SERCA2 activity was not dependent on the presence of phospholamban, and ELISA-based analyses rather revealed direct interaction between the polyarginines and the actuator domain of the protein. Surface plasmon resonance experiments confirmed strong binding within this region of SERCA2, and slow dissociation between the two species. Based on these observations, we urge caution when employing polyarginine CPPs. Indeed, as SERCA2 is expressed in diverse cell types, the wide-ranging consequences of SERCA2 binding and inhibition should be anticipated in both experimental and therapeutic settings.
Collapse
Affiliation(s)
| | | | | | | | | | - Cathrine Rein Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (P.K.L.); (O.M.); (T.P.S.); (M.L.); (M.M.); (W.E.L.)
| | | |
Collapse
|
38
|
Abdellatif AAH, Scagnetti G, Younis MA, Bouazzaoui A, Tawfeek HM, Aldosari BN, Almurshedi AS, Alsharidah M, Rugaie OA, Davies MPA, Liloglou T, Ross K, Saleem I. Non-coding RNA-directed therapeutics in lung cancer: Delivery technologies and clinical applications. Colloids Surf B Biointerfaces 2023; 229:113466. [PMID: 37515959 DOI: 10.1016/j.colsurfb.2023.113466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
Lung cancer is one of the most aggressive and deadliest health threats. There has been an increasing interest in non-coding RNA (ncRNA) recently, especially in the areas of carcinogenesis and tumour progression. However, ncRNA-directed therapies are still encountering obstacles on their way to the clinic. In the present article, we provide an overview on the potential of targeting ncRNA in the treatment of lung cancer. Then, we discuss the delivery challenges and recent approaches enabling the delivery of ncRNA-directed therapies to the lung cancer cells, where we illuminate some advanced technologies including chemically-modified oligonucleotides, nuclear targeting, and three-dimensional in vitro models. Furthermore, advanced non-viral delivery systems recruiting nanoparticles, biomimetic delivery systems, and extracellular vesicles are also highlighted. Lastly, the challenges limiting the clinical trials on the therapeutic targeting of ncRNAs in lung cancer and future directions to tackle them are explored.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Al Qassim 51452, Saudi Arabia; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Giulia Scagnetti
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Liverpool L3 3AF, UK
| | - Mahmoud A Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Medical Clinic, Hematology/Oncology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany
| | - Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Basmah N Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alanood S Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, P.O. Box 991, Unaizah, Al Qassim 51911, Saudi Arabia
| | - Michael P A Davies
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
| | | | - Kehinde Ross
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Liverpool L3 3AF, UK; Institute for Health Research, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Imran Saleem
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Liverpool L3 3AF, UK; Institute for Health Research, Liverpool John Moores University, Liverpool L3 3AF, UK.
| |
Collapse
|
39
|
Gostaviceanu A, Gavrilaş S, Copolovici L, Copolovici DM. Membrane-Active Peptides and Their Potential Biomedical Application. Pharmaceutics 2023; 15:2091. [PMID: 37631305 PMCID: PMC10459175 DOI: 10.3390/pharmaceutics15082091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Membrane-active peptides (MAPs) possess unique properties that make them valuable tools for studying membrane structure and function and promising candidates for therapeutic applications. This review paper provides an overview of the fundamental aspects of MAPs, focusing on their membrane interaction mechanisms and potential applications. MAPs exhibit various structural features, including amphipathic structures and specific amino acid residues, enabling selective interaction with multiple membranes. Their mechanisms of action involve disrupting lipid bilayers through different pathways, depending on peptide properties and membrane composition. The therapeutic potential of MAPs is significant. They have demonstrated antimicrobial activity against bacteria and fungi, making them promising alternatives to conventional antibiotics. MAPs can selectively target cancer cells and induce apoptosis, opening new avenues in cancer therapeutics. Additionally, MAPs serve as drug delivery vectors, facilitating the transport of therapeutic cargoes across cell membranes. They represent a fascinating class of biomolecules with significant potential in basic research and clinical applications. Understanding their mechanisms of action and designing peptides with enhanced selectivity and efficacy will further expand their utility in diverse fields. Exploring MAPs holds promise for developing novel therapeutic strategies against infections, cancer, and drug delivery challenges.
Collapse
Affiliation(s)
- Andreea Gostaviceanu
- Faculty of Food Engineering, Tourism and Environmental Protection, and Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Biomedical Sciences Doctoral School, University of Oradea, University St., No. 1, 410087 Oradea, Romania
| | - Simona Gavrilaş
- Faculty of Food Engineering, Tourism and Environmental Protection, and Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
| | - Lucian Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, and Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
| | - Dana Maria Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, and Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
| |
Collapse
|
40
|
Yurko R, Islam K, Weber B, Salama G, Zahid M. Conjugation of amiodarone to a novel cardiomyocyte cell penetrating peptide for potential targeted delivery to the heart. Front Chem 2023; 11:1220573. [PMID: 37547910 PMCID: PMC10402922 DOI: 10.3389/fchem.2023.1220573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
Modern medicine has developed a myriad of therapeutic drugs against a wide range of human diseases leading to increased life expectancy and better quality of life for millions of people. Despite the undeniable benefit of medical advancements in pharmaceutical technology, many of the most effective drugs currently in use have serious limitations such as off target side effects resulting in systemic toxicity. New generations of specialized drug constructs will enhance targeted therapeutic efficacy of existing and new drugs leading to safer and more effective treatment options for a variety of human ailments. As one of the most efficient drugs known for the treatment of cardiac arrhythmia, Amiodarone presents the same conundrum of serious systemic side effects associated with long term treatment. In this article we present the synthesis of a next-generation prodrug construct of amiodarone for the purpose of advanced targeting of cardiac arrhythmias by delivering the drug to cardiomyocytes using a novel cardiac targeting peptide, a cardiomyocyte-specific cell penetrating peptide. Our in vivo studies in guinea pigs indicate that cardiac targeting peptide-amiodarone conjugate is able to have similar effects on calcium handling as amiodarone at 1/15th the total molar dose of amiodarone. Further studies are warranted in animal models of atrial fibrillation to show efficacy of this conjugate.
Collapse
Affiliation(s)
- Ray Yurko
- Peptide Synthesis Facility, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kazi Islam
- Peptide Synthesis Facility, University of Pittsburgh, Pittsburgh, PA, United States
| | - Beth Weber
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Guy Salama
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Maliha Zahid
- Deptartment of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
41
|
Reveret L, Leclerc M, Morin F, Émond V, Calon F. Pharmacokinetics, biodistribution and toxicology of novel cell-penetrating peptides. Sci Rep 2023; 13:11081. [PMID: 37422520 PMCID: PMC10329699 DOI: 10.1038/s41598-023-37280-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/19/2023] [Indexed: 07/10/2023] Open
Abstract
Cell-penetrating peptides (CPPs) have been used in basic and preclinical research in the past 30 years to facilitate drug delivery into target cells. However, translation toward the clinic has not been successful so far. Here, we studied the pharmacokinetic (PK) and biodistribution profiles of Shuttle cell-penetrating peptides (S-CPP) in rodents, combined or not with an immunoglobulin G (IgG) cargo. We compared two enantiomers of S-CPP that contain both a protein transduction domain and an endosomal escape domain, with previously shown capacity for cytoplasmic delivery. The plasma concentration versus time curve of both radiolabelled S-CPPs required a two-compartment PK analytical model, which showed a fast distribution phase (t1/2α ranging from 1.25 to 3 min) followed by a slower elimination phase (t1/2β ranging from 5 to 15 h) after intravenous injection. Cargo IgG combined to S-CPPs displayed longer elimination half-life, of up to 25 h. The fast decrease in plasma concentration of S-CPPs was associated with an accumulation in target organs assessed at 1 and 5 h post-injection, particularly in the liver. In addition, in situ cerebral perfusion (ISCP) of L-S-CPP yielded a brain uptake coefficient of 7.2 ± 1.1 µl g-1 s-1, consistent with penetration across the blood-brain barrier (BBB), without damaging its integrity in vivo. No sign of peripheral toxicity was detected either by examining hematologic and biochemical blood parameters, or by measuring cytokine levels in plasma. In conclusion, S-CPPs are promising non-toxic transport vectors for improved tissue distribution of drug cargos in vivo.
Collapse
Affiliation(s)
- L Reveret
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Neurosciences Axis, CHU de Québec-Université Laval Research Center, 2705, Boulevard Laurier, Room T2-67, Quebec City, QC, G1V 4G2, Canada
| | - M Leclerc
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Neurosciences Axis, CHU de Québec-Université Laval Research Center, 2705, Boulevard Laurier, Room T2-67, Quebec City, QC, G1V 4G2, Canada
| | - F Morin
- Neurosciences Axis, CHU de Québec-Université Laval Research Center, 2705, Boulevard Laurier, Room T2-67, Quebec City, QC, G1V 4G2, Canada
| | - V Émond
- Neurosciences Axis, CHU de Québec-Université Laval Research Center, 2705, Boulevard Laurier, Room T2-67, Quebec City, QC, G1V 4G2, Canada
| | - F Calon
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada.
- Neurosciences Axis, CHU de Québec-Université Laval Research Center, 2705, Boulevard Laurier, Room T2-67, Quebec City, QC, G1V 4G2, Canada.
| |
Collapse
|
42
|
Wallen M, Aqil F, Spencer W, Gupta RC. Exosomes as an Emerging Plasmid Delivery Vehicle for Gene Therapy. Pharmaceutics 2023; 15:1832. [PMID: 37514019 PMCID: PMC10384126 DOI: 10.3390/pharmaceutics15071832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Despite its introduction more than three decades ago, gene therapy has fallen short of its expected potential for the treatment of a broad spectrum of diseases and continues to lack widespread clinical use. The fundamental limitation in clinical translatability of this therapeutic modality has always been an effective delivery system that circumvents degradation of the therapeutic nucleic acids, ensuring they reach the intended disease target. Plasmid DNA (pDNA) for the purpose of introducing exogenous genes presents an additional challenge due to its size and potential immunogenicity. Current pDNA methods include naked pDNA accompanied by electroporation or ultrasound, liposomes, other nanoparticles, and cell-penetrating peptides, to name a few. While the topic of numerous reviews, each of these methods has its own unique set of limitations, side effects, and efficacy concerns. In this review, we highlight emerging uses of exosomes for the delivery of pDNA for gene therapy. We specifically focus on bovine milk and colostrum-derived exosomes as a nano-delivery "platform". Milk/colostrum represents an abundant, scalable, and cost-effective natural source of exosomes that can be loaded with nucleic acids for targeted delivery to a variety of tissue types in the body. These nanoparticles can be functionalized and loaded with pDNA for the exogenous expression of genes to target a wide variety of disease phenotypes, overcoming many of the limitations of current gene therapy delivery techniques.
Collapse
Affiliation(s)
| | - Farrukh Aqil
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | - Ramesh C Gupta
- 3P Biotechnologies, Inc., Louisville, KY 40202, USA
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
43
|
Liu BR, Chen CW, Huang YW, Lee HJ. Cell-Penetrating Peptides for Use in Development of Transgenic Plants. Molecules 2023; 28:molecules28083367. [PMID: 37110602 PMCID: PMC10142301 DOI: 10.3390/molecules28083367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Genetically modified plants and crops can contribute to remarkable increase in global food supply, with improved yield and resistance to plant diseases or insect pests. The development of biotechnology introducing exogenous nucleic acids in transgenic plants is important for plant health management. Different genetic engineering methods for DNA delivery, such as biolistic methods, Agrobacterium tumefaciens-mediated transformation, and other physicochemical methods have been developed to improve translocation across the plasma membrane and cell wall in plants. Recently, the peptide-based gene delivery system, mediated by cell-penetrating peptides (CPPs), has been regarded as a promising non-viral tool for efficient and stable gene transfection into both animal and plant cells. CPPs are short peptides with diverse sequences and functionalities, capable of agitating plasma membrane and entering cells. Here, we highlight recent research and ideas on diverse types of CPPs, which have been applied in DNA delivery in plants. Various basic, amphipathic, cyclic, and branched CPPs were designed, and modifications of functional groups were performed to enhance DNA interaction and stabilization in transgenesis. CPPs were able to carry cargoes in either a covalent or noncovalent manner and to internalize CPP/cargo complexes into cells by either direct membrane translocation or endocytosis. Importantly, subcellular targets of CPP-mediated nucleic acid delivery were reviewed. CPPs offer transfection strategies and influence transgene expression at subcellular localizations, such as in plastids, mitochondria, and the nucleus. In summary, the technology of CPP-mediated gene delivery provides a potent and useful tool to genetically modified plants and crops of the future.
Collapse
Affiliation(s)
- Betty Revon Liu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Chi-Wei Chen
- Department of Life Science, College of Science and Engineering, National Dong Hwa University, Hualien 974301, Taiwan
| | - Yue-Wern Huang
- Department of Biological Sciences, College of Arts, Sciences, and Education, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Han-Jung Lee
- Department of Natural Resources and Environmental Studies, College of Environmental Studies and Oceanography, National Dong Hwa University, Hualien 974301, Taiwan
| |
Collapse
|
44
|
Li X, Guo X, Hu M, Cai R, Chen C. Optimal delivery strategies for nanoparticle-mediated mRNA delivery. J Mater Chem B 2023; 11:2063-2077. [PMID: 36794598 DOI: 10.1039/d2tb02455a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Messenger RNA (mRNA) has emerged as a new and efficient agent for the treatment of various diseases. The success of lipid nanoparticle-mRNA against the novel coronavirus (SARS-CoV-2) pneumonia epidemic has proved the clinical potential of nanoparticle-mRNA formulations. However, the deficiency in the effective biological distribution, high transfection efficiency and good biosafety are still the major challenges in clinical translation of nanomedicine for mRNA delivery. To date, a variety of promising nanoparticles have been constructed and then gradually optimized to facilitate the effective biodistribution of carriers and efficient mRNA delivery. In this review, we describe the design of nanoparticles with an emphasis on lipid nanoparticles, and discuss the manipulation strategies for nanoparticle-biology (nano-bio) interactions for mRNA delivery to overcome the biological barriers and improve the delivery efficiency, because the specific nano-bio interaction of nanoparticles usually remoulds the biomedical and physiological properties of the nanoparticles especially the biodistribution, mechanism of cellular internalization and immune response. Finally, we give a perspective for the future applications of this promising technology. We believe that the regulation of nano-bio interactions would be a significant breakthrough to improve the mRNA delivery efficiency and cross biological barriers. This review may provide a new direction for the design of nanoparticle-mediated mRNA delivery systems.
Collapse
Affiliation(s)
- Xiaoyan Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China.,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Xiaocui Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Mingdi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China.,The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
45
|
Oleynikov IP, Sudakov RV, Radyukhin VA, Arutyunyan AM, Azarkina NV, Vygodina TV. Interaction of Amphipathic Peptide from Influenza Virus M1 Protein with Mitochondrial Cytochrome Oxidase. Int J Mol Sci 2023; 24:ijms24044119. [PMID: 36835528 PMCID: PMC9961948 DOI: 10.3390/ijms24044119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The Bile Acid Binding Site (BABS) of cytochrome oxidase (CcO) binds numerous amphipathic ligands. To determine which of the BABS-lining residues are critical for interaction, we used the peptide P4 and its derivatives A1-A4. P4 is composed of two flexibly bound modified α-helices from the M1 protein of the influenza virus, each containing a cholesterol-recognizing CRAC motif. The effect of the peptides on the activity of CcO was studied in solution and in membranes. The secondary structure of the peptides was examined by molecular dynamics, circular dichroism spectroscopy, and testing the ability to form membrane pores. P4 was found to suppress the oxidase but not the peroxidase activity of solubilized CcO. The Ki(app) is linearly dependent on the dodecyl-maltoside (DM) concentration, indicating that DM and P4 compete in a 1:1 ratio. The true Ki is 3 μM. The deoxycholate-induced increase in Ki(app) points to a competition between P4 and deoxycholate. A1 and A4 inhibit solubilized CcO with Ki(app)~20 μM at 1 mM DM. A2 and A3 hardly inhibit CcO either in solution or in membranes. The mitochondrial membrane-bound CcO retains sensitivity to P4 and A4 but acquires resistance to A1. We associate the inhibitory effect of P4 with its binding to BABS and dysfunction of the proton channel K. Trp residue is critical for inhibition. The resistance of the membrane-bound enzyme to inhibition may be due to the disordered secondary structure of the inhibitory peptide.
Collapse
|
46
|
Complementary peptides represent a credible alternative to agrochemicals by activating translation of targeted proteins. Nat Commun 2023; 14:254. [PMID: 36650156 PMCID: PMC9845214 DOI: 10.1038/s41467-023-35951-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
The current agriculture main challenge is to maintain food production while facing multiple threats such as increasing world population, temperature increase, lack of agrochemicals due to health issues and uprising of weeds resistant to herbicides. Developing novel, alternative, and safe methods is hence of paramount importance. Here, we show that complementary peptides (cPEPs) from any gene can be designed to target specifically plant coding genes. External application of synthetic peptides increases the abundance of the targeted protein, leading to related phenotypes. Moreover, we provide evidence that cPEPs can be powerful tools in agronomy to improve plant traits, such as growth, resistance to pathogen or heat stress, without the needs of genetic approaches. Finally, by combining their activity they can also be used to reduce weed growth.
Collapse
|
47
|
Protein Transduction Domain-Mediated Delivery of Recombinant Proteins and In Vitro Transcribed mRNAs for Protein Replacement Therapy of Human Severe Genetic Mitochondrial Disorders: The Case of Sco2 Deficiency. Pharmaceutics 2023; 15:pharmaceutics15010286. [PMID: 36678915 PMCID: PMC9861957 DOI: 10.3390/pharmaceutics15010286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial disorders represent a heterogeneous group of genetic disorders with variations in severity and clinical outcomes, mostly characterized by respiratory chain dysfunction and abnormal mitochondrial function. More specifically, mutations in the human SCO2 gene, encoding the mitochondrial inner membrane Sco2 cytochrome c oxidase (COX) assembly protein, have been implicated in the mitochondrial disorder fatal infantile cardioencephalomyopathy with COX deficiency. Since an effective treatment is still missing, a protein replacement therapy (PRT) was explored using protein transduction domain (PTD) technology. Therefore, the human recombinant full-length mitochondrial protein Sco2, fused to TAT peptide (a common PTD), was produced (fusion Sco2 protein) and successfully transduced into fibroblasts derived from a SCO2/COX-deficient patient. This PRT contributed to effective COX assembly and partial recovery of COX activity. In mice, radiolabeled fusion Sco2 protein was biodistributed in the peripheral tissues of mice and successfully delivered into their mitochondria. Complementary to that, an mRNA-based therapeutic approach has been more recently considered as an innovative treatment option. In particular, a patented, novel PTD-mediated IVT-mRNA delivery platform was developed and applied in recent research efforts. PTD-IVT-mRNA of full-length SCO2 was successfully transduced into the fibroblasts derived from a SCO2/COX-deficient patient, translated in host ribosomes into a nascent chain of human Sco2, imported into mitochondria, and processed to the mature protein. Consequently, the recovery of reduced COX activity was achieved, thus suggesting the potential of this mRNA-based technology for clinical translation as a PRT for metabolic/genetic disorders. In this review, such research efforts will be comprehensibly presented and discussed to elaborate their potential in clinical application and therapeutic usefulness.
Collapse
|
48
|
Hattab G, Anžel A, Spänig S, Neumann N, Heider D. A parametric approach for molecular encodings using multilevel atomic neighborhoods applied to peptide classification. NAR Genom Bioinform 2023; 5:lqac103. [PMID: 36632611 PMCID: PMC9830542 DOI: 10.1093/nargab/lqac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/26/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Exploring new ways to represent and discover organic molecules is critical to the development of new therapies. Fingerprinting algorithms are used to encode or machine-read organic molecules. Molecular encodings facilitate the computation of distance and similarity measurements to support tasks such as similarity search or virtual screening. Motivated by the ubiquity of carbon and the emerging structured patterns, we propose a parametric approach for molecular encodings using carbon-based multilevel atomic neighborhoods. It implements a walk along the carbon chain of a molecule to compute different representations of the neighborhoods in the form of a binary or numerical array that can later be exported into an image. Applied to the task of binary peptide classification, the evaluation was performed by using forty-nine encodings of twenty-nine data sets from various biomedical fields, resulting in well over 1421 machine learning models. By design, the parametric approach is domain- and task-agnostic and scopes all organic molecules including unnatural and exotic amino acids as well as cyclic peptides. Applied to peptide classification, our results point to a number of promising applications and extensions. The parametric approach was developed as a Python package (cmangoes), the source code and documentation of which can be found at https://github.com/ghattab/cmangoes and https://doi.org/10.5281/zenodo.7483771.
Collapse
Affiliation(s)
| | - Aleksandar Anžel
- Department of Mathematics and Computer Science, Philipps-Universität Marburg, Marburg 35032, Germany
| | - Sebastian Spänig
- Department of Mathematics and Computer Science, Philipps-Universität Marburg, Marburg 35032, Germany
| | - Nils Neumann
- Department of Mathematics and Computer Science, Philipps-Universität Marburg, Marburg 35032, Germany
| | - Dominik Heider
- Department of Mathematics and Computer Science, Philipps-Universität Marburg, Marburg 35032, Germany
| |
Collapse
|
49
|
Gao Y, Liu X, Chen N, Yang X, Tang F. Recent Advance of Liposome Nanoparticles for Nucleic Acid Therapy. Pharmaceutics 2023; 15:178. [PMID: 36678807 PMCID: PMC9864445 DOI: 10.3390/pharmaceutics15010178] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Gene therapy, as an emerging therapeutic approach, has shown remarkable advantages in the treatment of some major diseases. With the deepening of genomics research, people have gradually realized that the emergence and development of many diseases are related to genetic abnormalities. Therefore, nucleic acid drugs are gradually becoming a new boon in the treatment of diseases (especially tumors and genetic diseases). It is conservatively estimated that the global market of nucleic acid drugs will exceed $20 billion by 2025. They are simple in design, mature in synthesis, and have good biocompatibility. However, the shortcomings of nucleic acid, such as poor stability, low bioavailability, and poor targeting, greatly limit the clinical application of nucleic acid. Liposome nanoparticles can wrap nucleic acid drugs in internal cavities, increase the stability of nucleic acid and prolong blood circulation time, thus improving the transfection efficiency. This review focuses on the recent advances and potential applications of liposome nanoparticles modified with nucleic acid drugs (DNA, RNA, and ASO) and different chemical molecules (peptides, polymers, dendrimers, fluorescent molecules, magnetic nanoparticles, and receptor targeting molecules). The ability of liposome nanoparticles to deliver nucleic acid drugs is also discussed in detail. We hope that this review will help researchers design safer and more efficient liposome nanoparticles, and accelerate the application of nucleic acid drugs in gene therapy.
Collapse
Affiliation(s)
- Yongguang Gao
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Xinhua Liu
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Na Chen
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Xiaochun Yang
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Fang Tang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| |
Collapse
|
50
|
CNS Delivery of Nucleic Acid Therapeutics: Beyond the Blood-Brain Barrier and Towards Specific Cellular Targeting. Pharm Res 2023; 40:77-105. [PMID: 36380168 DOI: 10.1007/s11095-022-03433-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Nucleic acid-based therapeutic molecules including small interfering RNA (siRNA), microRNA(miRNA), antisense oligonucleotides (ASOs), messenger RNA (mRNA), and DNA-based gene therapy have tremendous potential for treating diseases in the central nervous system (CNS). However, achieving clinically meaningful delivery to the brain and particularly to target cells and sub-cellular compartments is typically very challenging. Mediating cell-specific delivery in the CNS would be a crucial advance that mitigates off-target effects and toxicities. In this review, we describe these challenges and provide contemporary evidence of advances in cellular and sub-cellular delivery using a variety of delivery mechanisms and alternative routes of administration, including the nose-to-brain approach. Strategies to achieve subcellular localization, endosomal escape, cytosolic bioavailability, and nuclear transfer are also discussed. Ultimately, there are still many challenges to translating these experimental strategies into effective and clinically viable approaches for treating patients.
Collapse
|