1
|
Xie S, Liao P, Mi S, Song L, Chen X. Emerging patterns in nanoparticle-based therapeutic approaches for rheumatoid arthritis: A comprehensive bibliometric and visual analysis spanning two decades. Open Life Sci 2025; 20:20251071. [PMID: 40129468 PMCID: PMC11931663 DOI: 10.1515/biol-2025-1071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 03/26/2025] Open
Abstract
The aim of this study is to analyze scientific literature to investigate the current research status, focus areas, and developmental trends in nanoparticle systems for rheumatoid arthritis (RA) therapy. To do that, Research articles published from 2003 to 2023 were retrieved from the Web of Science database, and analysis included quantitative output, distribution by country/region, collaborative publishing data, influential authors, high-yield institutions, keywords, hotspots, and development trends. Visual knowledge maps were generated using VOSviewer and Citespace. Findings reveal a steady increase in publications related to nanoparticle systems for RA therapy, indicating growing global interest. China leads with 487 papers (37.433%), followed by the United States (233, 17.909%), India (179, 13.759%), South Korea (89, 6.841%), and Egypt (50, 3.843%). Active collaboration is observed, particularly between the United States and countries such as China, Germany, Saudi Arabia, India, England, and Pakistan. The Chinese Academy of Sciences ranks first in total articles published (55), with Liu Y from China being the most prolific author. The Journal of Controlled Release emerges as a primary outlet in this field. Primary keyword clusters include "Drug delivery systems," "Gold nanoparticles," "Transdermal delivery," "Angiogenesis," "Collagen-induced arthritis," "Rheumatoid arthritis," "Oxidant stress," "Dendritic cells," and "pH sensitive." Research hotspots with great development potential include "Immunopathological Mechanisms," "Novel drugs," and "Smart delivery system." In conclusion, research on nanoparticle systems for RA therapy has significantly expanded over the past two decades, with a focus on elucidating pathogenetic mechanisms and advancing novel drug delivery strategies anticipated to be prominent in the foreseeable future.
Collapse
Affiliation(s)
- Shenwei Xie
- Department of Rheumatology and Immunology, Hunan University of Medicine General Hospital, HuaiHua, 418000, China
| | - Pan Liao
- Department of Rheumatology and Immunology, Hunan University of Medicine General Hospital, HuaiHua, 418000, China
| | - Shuang Mi
- Department of Respiratory and Critical Care Medicine, Shenzhen Yantian District People’s Hospital, Shenzhen, 518000, China
| | - Liang Song
- Department of Rheumatology and Immunology, Hunan University of Medicine General Hospital, HuaiHua, 418000, China
| | - Xiaoyuan Chen
- Department of Respiratory and Critical Care Medicine, Shenzhen Yantian District People’s Hospital, Shenzhen, 518000, China
| |
Collapse
|
2
|
Alshememry A, Kalam MA, Shahid M, Ali R, Alhudaithi SS, Alshumaimeri NA, BinHudhud ZA, Aldaham AA, Binkhathlan Z, Almomen AA. Delafloxacin-Loaded Poly(d,l-lactide- co-glycolide) Nanoparticles for Topical Ocular Use: In Vitro Characterization and Antimicrobial Activity. ACS OMEGA 2024; 9:50476-50490. [PMID: 39741859 PMCID: PMC11683606 DOI: 10.1021/acsomega.4c07805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/08/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025]
Abstract
Objective: We developed delafloxacin (Dela)-loaded PLGA nanoparticles (PNPs) for potential ocular application via a topical route to treat eye infections caused by Gram-positive and Gram-negative bacteria. Methodology: Dela-PNPs were formulated using the emulsification-solvent evaporation method and stabilized using poly(vinyl alcohol) (PVA). Size and morphology were characterized by using dynamic light scattering (DLS) and scanning electron microscopy (SEM). Drug loading and encapsulation efficiency were measured via HPLC. Differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR) assessed the physical state and drug-polymer interaction. The in vitro drug release was evaluated using the dialysis bag method in simulated tear fluid (STF, pH 7.4) with Tween 80 (0.5%). The antimicrobial efficacy was determined by a minimum inhibitory concentration (MIC) and zone of inhibition tests against various bacteria. Results: Optimally sized PNPs were produced (238.9 ± 10.2 nm) with a PDI of 0.258 ± 0.084 and a ζ-potential of 2.78 ± 0.34 mV. Using 40 mg of PLGA, 4 mg of Dela, and 1% PVA, drug encapsulation and loading were 84.6 ± 7.3 and 12.9 ± 1.7%, respectively. DSC indicated that Dela was entrapped in an amorphous state within the PNPs. FTIR spectra showed no drug-polymer interactions. The formulation showed 40.6 ± 4.2% drug release within 24 h and 84.4 ± 6.1% by 96 h. MIC tests showed high susceptibility of Streptococcus pneumoniae, Klebsiella pneumoniae, and Escherichia coli (∼0.31 μg/mL) compared to Staphylococcus aureus and MRSA-6538 (∼0.63 μg/mL) and Bacillus subtilis (2.5 μg/mL). Stability studies showed minimal changes in particle characteristics over 3- and 6-month storage at 25 and 37 °C. Conclusion: Dela-PNPs exhibit significant potential as a nanoformulation for ocular applications.
Collapse
Affiliation(s)
- Abdullah
K. Alshememry
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Abul Kalam
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Raisuddin Ali
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Sulaiman S. Alhudaithi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Nada A. Alshumaimeri
- Al-Ghad
International Colleges for Applied Medical Sciences, Riyadh 13629, Saudi Arabia
| | - Ziyad A. BinHudhud
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrazzaq A. Aldaham
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Ziyad Binkhathlan
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Aliyah A. Almomen
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11491, Saudi Arabia
| |
Collapse
|
3
|
Ibrahim FM, Shalaby ES, Abdelhameed MF, El-Akad RH, Ahmed KA, Abdel-Aziz MS, El Habbasha ES, Rodrigues CV, Pintado M. Bioactive Potential of Chitosan-Oleic Acid Nanoparticles Loaded with Lemon Peel Essential Oil for Topical Treatment of Vulvovaginal Candidiasis. Molecules 2024; 29:5766. [PMID: 39683923 DOI: 10.3390/molecules29235766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
The rising incidence of vulvovaginal candidiasis (VVC) has been leading to the development of alternative antifungal therapies. This study aimed to develop a topical chitosan-oleic acid nanoparticle (CH-OA-NP) cream loaded with lemon peel essential oil (LPEO) for VVC treatment. The characterization of the optimal nanoparticle formulation (F4: 10 g/L CH, 2:1 OA/LPEO ratio) showed high encapsulation efficiency, stability, and controlled release. Moreover, it was characterized regarding its particle size, polydispersity index, zeta potential, and chemical/morphological profile. LPEO-related compounds (e.g., eriodictyol) were identified through LC-ESI-QqTOF-HRMS in the cream matrix, suggesting the preservation of LPEO potential bioactivities after formulation. In silico docking of 12 LPEO metabolites revealed that compounds such as citronellic acid exerted inhibitory effects against several inflammation-associated enzymes (e.g., 14-α-Demethylase). In vitro antimicrobial tests demonstrated remarkable activity against Candida albicans, Gram-negative (e.g., Escherichia coli), and Gram-positive (e.g., Staphylococcus aureus) bacteria. In vivo studies in a rat model of VVC revealed significant antifungal, anti-inflammatory, and immunomodulatory effects of the LPEO-CH-OA-NP cream (5% and 10%), leading to reduced MDA, MPO, and IL-1β levels and increased GSH activity. This novel formulation potentially offers a promising alternative therapy for VVC, addressing the current antifungal therapies' limitations, counteracting drug resistance.
Collapse
Affiliation(s)
- Faten M Ibrahim
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo P.O. Box 12622, Egypt
| | - Eman Samy Shalaby
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo P.O. Box 12622, Egypt
| | - Mohamed F Abdelhameed
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza P.O. Box 12622, Egypt
| | - Radwa H El-Akad
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza P.O. Box 12622, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza P.O. Box 12211, Egypt
| | - Mohamed S Abdel-Aziz
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Cairo P.O. Box 12622, Egypt
| | - El Sayed El Habbasha
- Field Crops Research Department, National Research Centre, Cairo P.O. Box 12622, Egypt
| | - Cristina V Rodrigues
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
4
|
Saeed S, Farooq M, Arshad R, Adnan S, Ahmad H, Masood Z, Malik A, Saeed A, Tabish TA. Responding to Hitch in Fighting Mycobacterium Tuberculosis Through Arginine Multi Functionalized Mucoadhesive SNEDDS of Rifampicin. Macromol Biosci 2024; 24:e2400288. [PMID: 39319685 DOI: 10.1002/mabi.202400288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/08/2024] [Indexed: 09/26/2024]
Abstract
The study aimed to develop thiolated pluronic-based self-emulsifying drug delivery system (SNEDDS) targeted delivery of Rifampicin coated by arginine for enhanced drug loading, mucoadhesion, muco penetration, site-specific delivery, stabilized delivery against intracellular mycobacterium tuberculosis (M. tb), decreased bacterial burden and production by intracellular targeting. Oleic oil, PEG 200 and Tween 80 are selected as oil, co-surfactant and surfactant based on solubilizing capacity and pseudo ternary diagram region. Coating of thiolated polymer on SNEDDS with ligand arginine (Arg-Th-F407 SNEDDDS) decreased bacterial burden and production by intracellular targeting in macrophages. Formulation are evaluated through scanning electron microscope (SEM), EDAX analysis, diffraction laser scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, and thermal analysis (DSC & TGA). Hydrodynamic diameter of thiolated polymeric SNEDDS (Th-F407 SNEDDS) and Arg-Th-F407 SNEDDS is observed to be 148.4 and 188.5 nm with low PDI of 0.4 and 0.3, respectively. Invitro drug release study from Arg-Th-F407 SNEDDS indicates 80% sustained release in 72 h under controlled conditions. Arg-Th-F407 SNEDDDS shows excellent capability of killing M.tb strains in macrophages even at low dose as compared to traditional rifampicin (RIF) and is found biocompatible, non-cytotoxic, and hemocompatible. Therefore, Arg-Th-F407 SNEDDDS of RIF proved ideal for targeting and treating M.tb strains within macrophages.
Collapse
Affiliation(s)
- Sana Saeed
- Faculty of Pharmacy, University of Lahore, Faculty Of Pharmacy, Lahore, 54000, Pakistan
| | - Muhammad Farooq
- Faculty of Pharmacy, University of Lahore, Faculty Of Pharmacy, Lahore, 54000, Pakistan
- School of Pharmacy, Multan University of Science and Technology, Multan, 60000, Pakistan
| | - Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Faculty Of Pharmacy, Lahore, 54000, Pakistan
- Adjunct Faculty at Equator University of Science and Technology, Kampala, 21353, Uganda
| | - Sherjeel Adnan
- Faculty of Pharmacy, Grand Asian University Sialkot, Sialkot, 51040, Pakistan
| | - Hammad Ahmad
- Sialkot Institute of Science and Technology, Sialkot, 51070, Pakistan
| | - Zeeshan Masood
- School of Pharmacy, Multan University of Science and Technology, Multan, 60000, Pakistan
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11421, Saudi Arabia
| | - Ayesha Saeed
- Faculty of Pharmacy, University of Lahore, Faculty Of Pharmacy, Lahore, 54000, Pakistan
| | - Tanveer A Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
van Staden D, Gerber M, Lemmer HJR. The Application of Nano Drug Delivery Systems in Female Upper Genital Tract Disorders. Pharmaceutics 2024; 16:1475. [PMID: 39598598 PMCID: PMC11597179 DOI: 10.3390/pharmaceutics16111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The prevalence of female reproductive system disorders is increasing, especially among women of reproductive age, significantly impacting their quality of life and overall health. Managing these diseases effectively is challenging due to the complex nature of the female reproductive system, characterized by dynamic physiological environments and intricate anatomical structures. Innovative drug delivery approaches are necessary to facilitate the precise regulation and manipulation of biological tissues. Nanotechnology is increasingly considered to manage reproductive system disorders, for example, nanomaterial imaging allows for early detection and enhances diagnostic precision to determine disease severity and progression. Additionally, nano drug delivery systems are gaining attention for their ability to target the reproductive system successfully, thereby increasing therapeutic efficacy and decreasing side effects. This comprehensive review outlines the anatomy of the female upper genital tract by highlighting the complex mucosal barriers and their impact on systemic and local drug delivery. Advances in nano drug delivery are described for their sustainable therapeutic action and increased biocompatibility to highlight the potential of nano drug delivery strategies in managing female upper genital tract disorders.
Collapse
Affiliation(s)
| | | | - Hendrik J. R. Lemmer
- Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), North-West University, Potchefstroom 2531, South Africa; (D.v.S.); (M.G.)
| |
Collapse
|
6
|
Beirampour N, Bustos-Salgado P, Garrós N, Mohammadi-Meyabadi R, Domènech Ò, Suñer-Carbó J, Rodríguez-Lagunas MJ, Kapravelou G, Montes MJ, Calpena A, Mallandrich M. Formulation of Polymeric Nanoparticles Loading Baricitinib as a Topical Approach in Ocular Application. Pharmaceutics 2024; 16:1092. [PMID: 39204436 PMCID: PMC11360485 DOI: 10.3390/pharmaceutics16081092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Topical ocular drug delivery faces several challenges due to the eye's unique anatomy and physiology. Physiological barriers, tear turnover, and blinking hinder the penetration of drugs through the ocular mucosa. In this context, nanoparticles offer several advantages over traditional eye drops. Notably, they can improve drug solubility and bioavailability, allow for controlled and sustained drug release, and can be designed to specifically target ocular tissues, thus minimizing systemic exposure. This study successfully designed and optimized PLGA and PCL nanoparticles for delivering baricitinib (BTB) to the eye using a factorial design, specifically a three-factor at five-levels central rotatable composite 23+ star design. The nanoparticles were small in size so that they would not cause discomfort when applied to the eye. They exhibited low polydispersity, had a negative surface charge, and showed high entrapment efficiency in most of the optimized formulations. The Challenge Test assessed the microbiological safety of the nanoparticle formulations. An ex vivo permeation study through porcine cornea demonstrated that the nanoparticles enhanced the permeability coefficient of the drug more than 15-fold compared to a plain solution, resulting in drug retention in the tissue and providing a depot effect. Finally, the in vitro ocular tolerance studies showed no signs of irritancy, which was further confirmed by HET-CAM testing.
Collapse
Affiliation(s)
- Negar Beirampour
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (N.B.); (P.B.-S.); (R.M.-M.); (J.S.-C.); (A.C.)
| | - Paola Bustos-Salgado
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (N.B.); (P.B.-S.); (R.M.-M.); (J.S.-C.); (A.C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Núria Garrós
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (N.B.); (P.B.-S.); (R.M.-M.); (J.S.-C.); (A.C.)
| | - Roya Mohammadi-Meyabadi
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (N.B.); (P.B.-S.); (R.M.-M.); (J.S.-C.); (A.C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Òscar Domènech
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (N.B.); (P.B.-S.); (R.M.-M.); (J.S.-C.); (A.C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Joaquim Suñer-Carbó
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (N.B.); (P.B.-S.); (R.M.-M.); (J.S.-C.); (A.C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - María José Rodríguez-Lagunas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 08028 Barcelona, Spain;
| | - Garyfallia Kapravelou
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Universidad de Granada, 18100 Granada, Spain;
| | - María Jesús Montes
- Department de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain;
| | - Ana Calpena
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (N.B.); (P.B.-S.); (R.M.-M.); (J.S.-C.); (A.C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Mireia Mallandrich
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (N.B.); (P.B.-S.); (R.M.-M.); (J.S.-C.); (A.C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| |
Collapse
|
7
|
Radeva L, Yordanov Y, Spassova I, Kovacheva D, Tibi IPE, Zaharieva MM, Kaleva M, Najdenski H, Petrov PD, Tzankova V, Yoncheva K. Incorporation of Resveratrol-Hydroxypropyl-β-Cyclodextrin Complexes into Hydrogel Formulation for Wound Treatment. Gels 2024; 10:346. [PMID: 38786263 PMCID: PMC11121020 DOI: 10.3390/gels10050346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Resveratrol could be applied in wound healing therapies because of its antioxidant, anti-inflammatory and antibacterial effects. However, the main limitation of resveratrol is its low aqueous solubility. In this study, resveratrol was included in hydroxypropyl-β-cyclodextrin complexes and further formulated in Pluronic F-127 hydrogels for wound treatment therapy. IR-spectroscopy and XRD analysis confirmed the successful incorporation of resveratrol into complexes. The wound-healing ability of these complexes was estimated by a scratch assay on fibroblasts, which showed a tendency for improvement of the effect of resveratrol after complexation. The antimicrobial activity of resveratrol in aqueous dispersion and in the complexes was evaluated on methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Candida albicans strains. The results revealed a twofold decrease in the MIC and stronger inhibition of the metabolic activity of MRSA after treatment with resveratrol in the complexes compared to the suspended drug. Furthermore, the complexes were included in Pluronic hydrogel, which provided efficient drug release and appropriate viscoelastic properties. The formulated hydrogel showed excellent biocompatibility which was confirmed via skin irritation test on rabbits. In conclusion, Pluronic hydrogel containing resveratrol included in hydroxypropyl-β-cyclodextrin complexes is a promising topical formulation for further studies directed at wound therapy.
Collapse
Affiliation(s)
- Lyubomira Radeva
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Yordan Yordanov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Ivanka Spassova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Daniela Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | - Maya M. Zaharieva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Mila Kaleva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Hristo Najdenski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Petar D. Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Virginia Tzankova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | | |
Collapse
|
8
|
Awadeen RH, Boughdady MF, Zaghloul RA, Elsaed WM, Abu Hashim II, Meshali MM. Formulation of lipid polymer hybrid nanoparticles of the phytochemical Fisetin and its in vivo assessment against severe acute pancreatitis. Sci Rep 2023; 13:19110. [PMID: 37925581 PMCID: PMC10625596 DOI: 10.1038/s41598-023-46215-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
Fisetin (FST) is a naturally occurring flavonol that has recently emerged as a bioactive phytochemical with an impressive array of biological activities. To the author knowledge, boosting the activity of FST against severe acute pancreatitis (SAP) through a nanostructured delivery system (Nanophytomedicine) has not been achieved before. Thereupon, FST-loaded lipid polymer hybrid nanoparticles (FST-loaded LPHNPs) were prepared through conjoined ultrasonication and double emulsion (w/o/w) techniques. Comprehensive in vitro and in vivo evaluations were conducted. The optimized nanoparticle formula displayed a high entrapment efficiency % of 61.76 ± 1.254%, high loading capacity % of 32.18 ± 0.734, low particle size of 125.39 ± 0.924 nm, low particle size distribution of 0.357 ± 0.012, high zeta potential of + 30.16 ± 1.416 mV, and high mucoadhesive strength of 35.64 ± 0.548%. In addition, it exhibited a sustained in vitro release pattern of FST. In the in vivo study, oral pre-treatment of FST-loaded LPHNPs protected against L-arginine induced SAP and multiple organ injuries in rats compared to both FST alone and plain LPHNPs, as well as the untreated group, proven by both biochemical studies, that included both amylase and lipase activities, and histochemical studies of pancreas, liver, kidney and lungs. Therefore, the study could conclude the potential efficacy of the novel phytopharmaceutical delivery system of FST as a prophylactic regimen for SAP and consequently, associated multiple organ injuries.
Collapse
Affiliation(s)
- Randa Hanie Awadeen
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt.
| | - Mariza Fouad Boughdady
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt
| | - Randa A Zaghloul
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Wael M Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Irhan Ibrahim Abu Hashim
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt
| | - Mahasen Mohamed Meshali
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt
| |
Collapse
|
9
|
Aman RM, Zaghloul RA, Elsaed WM, Hashim IIA. In vitro-in vivo assessments of apocynin-hybrid nanoparticle-based gel as an effective nanophytomedicine for treatment of rheumatoid arthritis. Drug Deliv Transl Res 2023; 13:2903-2929. [PMID: 37284937 PMCID: PMC10545657 DOI: 10.1007/s13346-023-01360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/08/2023]
Abstract
Apocynin (APO), a well-known bioactive plant-based phenolic phytochemical with renowned anti-inflammatory and antioxidant pharmacological activities, has recently emerged as a specific nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) oxidase inhibitor. As far as we know, no information has been issued yet regarding its topical application as a nanostructured-based delivery system. Herein, APO-loaded Compritol® 888 ATO (lipid)/chitosan (polymer) hybrid nanoparticles (APO-loaded CPT/CS hybrid NPs) were successfully developed, characterized, and optimized, adopting a fully randomized design (32) with two independent active parameters (IAPs), namely, CPT amount (XA) and Pluronic® F-68 (PF-68) concentration (XB), at three levels. Further in vitro-ex vivo investigation of the optimized formulation was performed before its incorporation into a gel base matrix to prolong its residence time with consequent therapeutic efficacy enhancement. Subsequently, scrupulous ex vivo-in vivo evaluations of APO-hybrid NPs-based gel (containing the optimized formulation) to scout out its momentous activity as a topical nanostructured system for beneficial remedy of rheumatoid arthritis (RA) were performed. Imperatively, the results support an anticipated effectual therapeutic activity of the APO-hybrid NPs-based gel formulation against Complete Freund's Adjuvant-induced rheumatoid arthritis (CFA-induced RA) in rats. In conclusion, APO-hybrid NPs-based gel could be considered a promising topical nanostructured system to break new ground for phytopharmaceutical medical involvement in inflammatory-dependent ailments.
Collapse
Affiliation(s)
- Reham Mokhtar Aman
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt.
| | - Randa Ahmed Zaghloul
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt
| | - Wael M Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt
| | - Irhan Ibrahim Abu Hashim
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt
| |
Collapse
|
10
|
Güncüm E, Işıklan N, Anlaş C, Bulut E, Bakırel T. Preparation, characterization, and evaluation of antibacterial and cytotoxic activity of chitosan-polyethylene glycol nanoparticles loaded with amoxicillin as a novel drug delivery system. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:1660-1682. [PMID: 36756763 DOI: 10.1080/09205063.2023.2179269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
In this study, nanoparticles of amoxicillin (AMX) were prepared using chitosan (CHI) and polyethylene glycol (PEG). The physicochemical properties of the particles were investigated by FT-IR, DSC, SEM, and zeta potential analyses. The nanoparticles showed a spherical shape, and the average size of formulations was within the range of 696.20 ± 24.86 - 359.53 ± 7.41 nm. Zeta potential data demonstrated that the formulations had positive surface charges with a zeta potential range of 21.38 ± 2.28 - 7.73 ± 1.66 mV. FTIR analysis showed that the drug was successfully entrapped in the nanoparticles. DSC results suggested that the drug was present in amorphous form in the polymer matrix. In vitro release studies demonstrated that the release pattern consisted of two phases, with an initial burst release followed by a controlled and sustained release. The MTT assay results on mouse fibroblast cell line indicated that the prepared formulations did not affect the viability of the cells. In the in vitro antibacterial activity test, it was found that the drug-loaded nanoparticles have AMX-equivalent antibacterial activity against E. coli, and S. aureus. These findings revealed that the obtained nanoparticles might be a promising and safe nanocarrier system for efficient delivery of AMX.
Collapse
Affiliation(s)
- Enes Güncüm
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Kırıkkale University, Yahşihan, Kırıkkale, Turkey
| | - Nuran Işıklan
- Faculty of Science and Arts, Department of Chemistry, Kırıkkale University, Yahşihan, Kırıkkale, Turkey
| | - Ceren Anlaş
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Istanbul University- Cerrahpasa, Buyukcekmece, Istanbul, Turkey
| | - Elif Bulut
- Department of Zoonotic and Vector-borne Diseases, Republic of Turkey Ministry of Health, Ankara, Turkey
| | - Tülay Bakırel
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Istanbul University- Cerrahpasa, Buyukcekmece, Istanbul, Turkey
| |
Collapse
|
11
|
Chitosan-Based Ciprofloxacin Extended Release Systems: Combined Synthetic and Pharmacological (In Vitro and In Vivo) Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248865. [PMID: 36557998 PMCID: PMC9784460 DOI: 10.3390/molecules27248865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Ciprofloxacin is one of the most effective antibiotics, but it is characterized by a range of side effects. Elaboration of drug-releasing systems which allow to diminish toxicity of ciprofloxacin is a challenging task in medicinal chemistry. The current study is focused on development of new ciprofloxacin releasing systems (CRS). We found that ultrasound efficiently promotes N,N'-dicyclohexyl carbodiimide-mediated coupling between COOH and NH2 functionalities in water. This was used for conjugation of ciprofloxacin to chitosan. The obtained ciprofloxacin/chitosan conjugates are capable of forming their self-assembled nanoparticles (SANPs) in aqueous medium. The SANPs can be additionally loaded by ciprofloxacin to form new CRS. The CRS demonstrated high loading and encapsulation efficiency and they are characterized by extended release profile (20 h). The elaborated CRS were tested in vivo in rats. The in vivo antibacterial effect of the CRS exceeded that of the starting ciprofloxacin. Moreover, the in vivo acute and subacute toxicity of the nanoparticles was almost identical to that of the chitosan, which is considered as the non-toxic biopolymer.
Collapse
|
12
|
Abu Lila AS, Huwaimel B, Alobaida A, Hussain T, Rafi Z, Mehmood K, Abdallah MH, Hagbani TA, Rizvi SMD, Moin A, Ahmed AF. Delafloxacin-Capped Gold Nanoparticles (DFX-AuNPs): An Effective Antibacterial Nano-Formulation of Fluoroquinolone Antibiotic. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15165709. [PMID: 36013845 PMCID: PMC9415438 DOI: 10.3390/ma15165709] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 05/03/2023]
Abstract
New antibiotics are seen as 'drugs of last resort' against virulent bacteria. However, development of resistance towards new antibiotics with time is a universal fact. Delafloxacin (DFX) is a new fluoroquinolone antibiotic that differs from existing fluoroquinolones by the lack of a protonatable substituent, which gives the molecule a weakly acidic nature, affording it higher antibacterial activity under an acidic environment. Furthermore, antibiotic-functionalized metallic nanoparticles have been recently emerged as a feasible platform for conquering bacterial resistance. In the present study, therefore, we aimed at preparing DFX-gold nano-formulations to increase the antibacterial potential of DFX. To synthesize DFX-capped gold nanoparticles (DFX-AuNPs), DFX was used as a reducing and stabilizing/encapsulating agent. Various analytical techniques such as UV-visible spectroscopy, TEM, DLS, FTIR and zeta potential analysis were applied to determine the properties of the synthesized DFX-AuNPs. The synthesized DFX-AuNPs revealed a distinct surface plasmon resonance (SPR) band at 530 nm and an average size of 16 nm as manifested by TEM analysis. In addition, Zeta potential results (-19 mV) confirmed the stability of the synthesized DFX-AuNPs. Furthermore, FTIR analysis demonstrated that DFX was adsorbed onto the surface of AuNPs via strong interaction between AuNPs and DFX. Most importantly, comparative antibacterial analysis of DFX alone and DFX-AuNPs against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) verified the superior antibacterial activity of DFX-AuNPs against the tested microorganisms. To sum up, DFX gold nano-formulations can offer a promising possible solution, even at a lower antibiotic dose, to combat pathogenic bacteria.
Collapse
Affiliation(s)
- Amr Selim Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Ahmed Alobaida
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Zeeshan Rafi
- Nanomedicine and Nanotechnology Lab, Department of Biosciences, Integral University, Lucknow 226026, India
| | - Khalid Mehmood
- Department of Pharmacy, Abbottabad University of Science and Technology, Havelian 22500, Pakistan
| | - Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Correspondence: (S.M.D.R.); (A.M.)
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Correspondence: (S.M.D.R.); (A.M.)
| | - Abobakr F. Ahmed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
13
|
Development of Chitosan-Coated PLGA-Based Nanoparticles for Improved Oral Olaparib Delivery: In Vitro Characterization, and In Vivo Pharmacokinetic Studies. Processes (Basel) 2022. [DOI: 10.3390/pr10071329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Olaparib (OLP) is an orally active poly (ADP-ribose) polymerase enzyme inhibitor, approved for treatment for the metastatic stage of prostate, pancreatic, breast and ovarian cancer. Due to its low bioavailability, an increase in dose and frequency is required to achieve therapeutic benefits, which also results in associated toxicity in patients. In the current study, OLP-loaded poly (d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) (OLP-PLGA NPs) and a coating of OLP-PLGA NPs with chitosan (CS) (OLP-CS-PLGA NPs) were prepared successfully in order to improve the dissolution rate and bioavailability. The developed OLP-PLGA NPs were evaluated for hydrodynamic particle size (392 ± 5.3 nm), PDI (0.360 ± 0.03), ZP (−26.9 ± 2.1 mV), EE (71.39 ± 5.5%) and DL (14.86 ± 1.4%), and OLP-CS-PLGA NPs, hydrodynamic particle size (622 ± 9.5 nm), PDI (0.321 ± 0.02), ZP (+36.0 ± 1.7 mV), EE (84.78 ± 6.3%) and DL (11.05 ± 2.6%). The in vitro release profile of both developed NPs showed a sustained release pattern. Moreover, the pharmacokinetics results exhibited a 2.0- and 4.75-fold increase in the bioavailability of OLP-PLGA NPs and OLP-CS-PLGA NPs, respectively, compared to normal OLP suspension. The results revealed that OLP-CS-PLGA NPs could be an effective approach to sustaining and improving the bioavailability of OLP.
Collapse
|
14
|
Ahmed MM, Anwer MK, Fatima F, Aldawsari MF, Alalaiwe A, Alali AS, Alharthi AI, Kalam MA. Boosting the Anticancer Activity of Sunitinib Malate in Breast Cancer through Lipid Polymer Hybrid Nanoparticles Approach. Polymers (Basel) 2022; 14:2459. [PMID: 35746034 PMCID: PMC9227860 DOI: 10.3390/polym14122459] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 02/01/2023] Open
Abstract
In the current study, lipid-polymer hybrid nanoparticles (LPHNPs) fabricated with lipoid-90H and chitosan, sunitinib malate (SM), an anticancer drug was loaded using lecithin as a stabilizer by employing emulsion solvent evaporation technique. Four formulations (SLPN1-SLPN4) were developed by varying the concentration of chitosan polymer. Based on particle characterization, SLPN4 was optimized with size (439 ± 5.8 nm), PDI (0.269), ZP (+34 ± 5.3 mV), and EE (83.03 ± 4.9%). Further, the optimized formulation was characterized by FTIR, DSC, XRD, SEM, and in vitro release studies. In-vitro release of the drug from SPN4 was found to be 84.11 ± 2.54% as compared with pure drug SM 24.13 ± 2.67%; in 48 h, release kinetics followed the Korsmeyer-Peppas model with Fickian release mechanism. The SLPN4 exhibited a potent cytotoxicity against MCF-7 breast cancer, as evident by caspase 3, 9, and p53 activities. According to the findings, SM-loaded LPHNPs might be a promising therapy option for breast cancer.
Collapse
Affiliation(s)
- Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.K.A.); (F.F.); (M.F.A.); (A.A.); (A.S.A.)
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.K.A.); (F.F.); (M.F.A.); (A.A.); (A.S.A.)
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.K.A.); (F.F.); (M.F.A.); (A.A.); (A.S.A.)
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.K.A.); (F.F.); (M.F.A.); (A.A.); (A.S.A.)
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.K.A.); (F.F.); (M.F.A.); (A.A.); (A.S.A.)
| | - Amer S. Alali
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.K.A.); (F.F.); (M.F.A.); (A.A.); (A.S.A.)
| | - Abdulrahman I. Alharthi
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj 11942, Saudi Arabia;
| | - Mohd Abul Kalam
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
15
|
Zong TX, Silveira AP, Morais JAV, Sampaio MC, Muehlmann LA, Zhang J, Jiang CS, Liu SK. Recent Advances in Antimicrobial Nano-Drug Delivery Systems. NANOMATERIALS 2022; 12:nano12111855. [PMID: 35683711 PMCID: PMC9182179 DOI: 10.3390/nano12111855] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
Infectious diseases are among the major health issues of the 21st century. The substantial use of antibiotics over the years has contributed to the dissemination of multidrug resistant bacteria. According to a recent report by the World Health Organization, antibacterial (ATB) drug resistance has been one of the biggest challenges, as well as the development of effective long-term ATBs. Since pathogens quickly adapt and evolve through several strategies, regular ATBs usually may result in temporary or noneffective treatments. Therefore, the demand for new therapies methods, such as nano-drug delivery systems (NDDS), has aroused huge interest due to its potentialities to improve the drug bioavailability and targeting efficiency, including liposomes, nanoemulsions, solid lipid nanoparticles, polymeric nanoparticles, metal nanoparticles, and others. Given the relevance of this subject, this review aims to summarize the progress of recent research in antibacterial therapeutic drugs supported by nanobiotechnological tools.
Collapse
Affiliation(s)
- Tong-Xin Zong
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
| | - Ariane Pandolfo Silveira
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
| | | | - Marina Carvalho Sampaio
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
| | - Luis Alexandre Muehlmann
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220900, Brazil
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| | - Shan-Kui Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| |
Collapse
|
16
|
|
17
|
Anwer MK, Ali EA, Iqbal M, Ahmed MM, Aldawsari MF, Saqr AA, Ansari MN, Aboudzadeh MA. Development of Sustained Release Baricitinib Loaded Lipid-Polymer Hybrid Nanoparticles with Improved Oral Bioavailability. Molecules 2021; 27:168. [PMID: 35011397 PMCID: PMC8746631 DOI: 10.3390/molecules27010168] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
Baricitinib (BTB) is an orally administered Janus kinase inhibitor, therapeutically used for the treatment of rheumatoid arthritis. Recently it has also been approved for the treatment of COVID-19 infection. In this study, four different BTB-loaded lipids (stearin)-polymer (Poly(d,l-lactide-co-glycolide)) hybrid nanoparticles (B-PLN1 to B-PLN4) were prepared by the single-step nanoprecipitation method. Next, they were characterised in terms of physicochemical properties such as particle size, zeta potential (ζP), polydispersity index (PDI), entrapment efficiency (EE) and drug loading (DL). Based on preliminary evaluation, the B-PLN4 was regarded as the optimised formulation with particle size (272 ± 7.6 nm), PDI (0.225), ζP (-36.5 ± 3.1 mV), %EE (71.6 ± 1.5%) and %DL (2.87 ± 0.42%). This formulation (B-PLN4) was further assessed concerning morphology, in vitro release, and in vivo pharmacokinetic studies in rats. The in vitro release profile exhibited a sustained release pattern well-fitted by the Korsmeyer-Peppas kinetic model (R2 = 0.879). The in vivo pharmacokinetic data showed an enhancement (2.92 times more) in bioavailability in comparison to the normal suspension of pure BTB. These data concluded that the formulated lipid-polymer hybrid nanoparticles could be a promising drug delivery option to enhance the bioavailability of BTB. Overall, this study provides a scientific basis for future studies on the entrapment efficiency of lipid-polymer hybrid systems as promising carriers for overcoming pharmacokinetic limitations.
Collapse
Affiliation(s)
- Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.M.A.); (M.F.A.); (A.A.S.)
| | - Essam A. Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.A.A.); (M.I.)
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.A.A.); (M.I.)
- Bioavailability Laboratory, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.M.A.); (M.F.A.); (A.A.S.)
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.M.A.); (M.F.A.); (A.A.S.)
| | - Ahmed Al Saqr
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.M.A.); (M.F.A.); (A.A.S.)
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - M. Ali Aboudzadeh
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, University Pau & Pays Adour, E2S UPPA, IPREM, UMR5254, 64000 Pau, France
| |
Collapse
|
18
|
Rusu A, Lungu IA, Moldovan OL, Tanase C, Hancu G. Structural Characterization of the Millennial Antibacterial (Fluoro)Quinolones-Shaping the Fifth Generation. Pharmaceutics 2021; 13:pharmaceutics13081289. [PMID: 34452252 PMCID: PMC8399897 DOI: 10.3390/pharmaceutics13081289] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/12/2022] Open
Abstract
The evolution of the class of antibacterial quinolones includes the introduction in therapy of highly successful compounds. Although many representatives were withdrawn due to severe adverse reactions, a few representatives have proven their therapeutical value over time. The classification of antibacterial quinolones into generations is a valuable tool for physicians, pharmacists, and researchers. In addition, the transition from one generation to another has brought new representatives with improved properties. In the last two decades, several representatives of antibacterial quinolones received approval for therapy. This review sets out to chronologically outline the group of approved antibacterial quinolones since 2000. Special attention is given to eight representatives: besifloxacin, delafoxacin, finafloxacin, lascufloxacin, nadifloxacin and levonadifloxacin, nemonoxacin, and zabofloxacin. These compounds have been characterized regarding physicochemical properties, formulations, antibacterial activity spectrum and advantageous structural characteristics related to antibacterial efficiency. At present these new compounds (with the exception of nadifloxacin) are reported differently, most often in the fourth generation and less frequently in a new generation (the fifth). Although these new compounds' mechanism does not contain essential new elements, the question of shaping a new generation (the fifth) arises, based on higher potency and broad spectrum of activity, including resistant bacterial strains. The functional groups that ensured the biological activity, good pharmacokinetic properties and a safety profile were highlighted. In addition, these new representatives have a low risk of determining bacterial resistance. Several positive aspects are added to the fourth fluoroquinolones generation, characteristics that can be the basis of the fifth generation. Antibacterial quinolones class continues to acquire new compounds with antibacterial potential, among other effects. Numerous derivatives, hybrids or conjugates are currently in various stages of research.
Collapse
Affiliation(s)
- Aura Rusu
- Pharmaceutical and Therapeutical Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.R.); (G.H.)
| | - Ioana-Andreea Lungu
- The Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.-A.L.); (O.-L.M.)
| | - Octavia-Laura Moldovan
- The Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.-A.L.); (O.-L.M.)
| | - Corneliu Tanase
- Pharmaceutical Botany Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Correspondence: ; Tel.: +40-744-215-543
| | - Gabriel Hancu
- Pharmaceutical and Therapeutical Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.R.); (G.H.)
| |
Collapse
|
19
|
Anwer MK, Iqbal M, Aldawsari MF, Alalaiwe A, Ahmed MM, Muharram MM, Ezzeldin E, Mahmoud MA, Imam F, Ali R. Improved antimicrobial activity and oral bioavailability of delafloxacin by self-nanoemulsifying drug delivery system (SNEDDS). J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Almutairy BK, Alshetaili A, Alali AS, Ahmed MM, Anwer MK, Aboudzadeh MA. Design of Olmesartan Medoxomil-Loaded Nanosponges for Hypertension and Lung Cancer Treatments. Polymers (Basel) 2021; 13:2272. [PMID: 34301030 PMCID: PMC8309359 DOI: 10.3390/polym13142272] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Olmesartan medoxomil (OLM) is one of the prominent antihypertensive drug that suffers from low aqueous solubility and dissolution rate leading to its low bioavailability. To improve the oral bioavailability of OLM, a delivery system based on ethylcellulose (EC, a biobased polymer) nanosponges (NSs) was developed and evaluated for cytotoxicity against the A549 lung cell lines and antihypertensive potential in a rat model. Four OLM-loaded NSs (ONS1-ONS4) were prepared and fully evaluated in terms of physicochemical properties. Among these formulations, ONS4 was regarded as the optimized formulation with particle size (487 nm), PDI (0.386), zeta potential (ζP = -18.1 mV), entrapment efficiency (EE = 91.2%) and drug loading (DL = 0.88%). In addition, a nanosized porous morphology was detected for this optimized system with NS surface area of about 63.512 m2/g, pore volume and pore radius Dv(r) of 0.149 cc/g and 15.274 Å, respectively, measured by nitrogen adsorption/desorption analysis. The observed morphology plus sustained release rate of OLM caused that the optimized formulation showed higher cytotoxicity against A549 lung cell lines in comparison to the pure OLM. Finally, this system (ONS4) reduced the systolic blood pressure (SBP) significantly (p < 0.01) as compared to control and pure OLM drug in spontaneously hypertensive rats. Overall, this study provides a scientific basis for future studies on the encapsulation efficiency of NSs as promising drug carriers for overcoming pharmacokinetic limitations.
Collapse
Affiliation(s)
- Bjad K. Almutairy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (B.K.A.); (A.A.); (A.S.A.); (M.M.A.)
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (B.K.A.); (A.A.); (A.S.A.); (M.M.A.)
| | - Amer S. Alali
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (B.K.A.); (A.A.); (A.S.A.); (M.M.A.)
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (B.K.A.); (A.A.); (A.S.A.); (M.M.A.)
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (B.K.A.); (A.A.); (A.S.A.); (M.M.A.)
| | - M. Ali Aboudzadeh
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, University Pau & Pays Adour, 64000 Pau, France
| |
Collapse
|
21
|
Potential Applications of Chitosan-Based Nanomaterials to Surpass the Gastrointestinal Physiological Obstacles and Enhance the Intestinal Drug Absorption. Pharmaceutics 2021; 13:pharmaceutics13060887. [PMID: 34203816 PMCID: PMC8232820 DOI: 10.3390/pharmaceutics13060887] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/06/2021] [Accepted: 06/11/2021] [Indexed: 12/29/2022] Open
Abstract
The small intestine provides the major site for the absorption of numerous orally administered drugs. However, before reaching to the systemic circulation to exert beneficial pharmacological activities, the oral drug delivery is hindered by poor absorption/metabolic instability of the drugs in gastrointestinal (GI) tract and the presence of the mucus layer overlying intestinal epithelium. Therefore, a polymeric drug delivery system has emerged as a robust approach to enhance oral drug bioavailability and intestinal drug absorption. Chitosan, a cationic polymer derived from chitin, and its derivatives have received remarkable attention to serve as a promising drug carrier, chiefly owing to their versatile, biocompatible, biodegradable, and non-toxic properties. Several types of chitosan-based drug delivery systems have been developed, including chemical modification, conjugates, capsules, and hybrids. They have been shown to be effective in improving intestinal assimilation of several types of drugs, e.g., antidiabetic, anticancer, antimicrobial, and anti-inflammatory drugs. In this review, the physiological challenges affecting intestinal drug absorption and the effects of chitosan on those parameters impacting on oral bioavailability are summarized. More appreciably, types of chitosan-based nanomaterials enhancing intestinal drug absorption and their mechanisms, as well as potential applications in diabetes, cancers, infections, and inflammation, are highlighted. The future perspective of chitosan applications is also discussed.
Collapse
|
22
|
Improving the Solubilization and Bioavailability of Arbidol Hydrochloride by the Preparation of Binary and Ternary β-Cyclodextrin Complexes with Poloxamer 188. Pharmaceuticals (Basel) 2021; 14:ph14050411. [PMID: 33926020 PMCID: PMC8145073 DOI: 10.3390/ph14050411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022] Open
Abstract
In the current study, the effect of poloxamer 188 on the complexation efficiency and dissolution of arbidol hydrochloride (ADL), a broad-spectrum antiviral agent, with β-cyclodextrin (β-CD) was investigated. Phase solubility studies confirmed a stoichiometry of a 1:1 ratio for both ADL:β-CD and ADL/β-CD with a 1% poloxamer 188 system with an AL type of phase solubility curve. The stability constants (K1:1) calculated from the AL type diagram were 550 M-1 and 2134 M-1 for AD:β-CD and ADL/β-CD with 1% poloxamer 188, respectively. The binary ADL/β-CD and ternary ADL/β-CD with 1% poloxamer 188 complexes were prepared by kneading and a solvent evaporation method and were characterized by aqueous solubility, FTIR, PXRD, DSC and SEM in vitro studies. The solubility (13.1 fold) and release of ADL were markedly improved in kneaded ternary ADL/β-CD with 1% poloxamer 188 (KDB). The binding affinity of ADL and β-CD was confirmed by 1H NMR and 2D ROSEY studies. The ternary complex (KDB) was further subjected for in vivo pharmacokinetic studies in rats and a significant improvement in the bioavailability (2.17 fold) was observed in comparison with pure ADL. Therefore, it can be concluded that the solubilization and bioavailability of ADL can be remarkably increased by ADL/β-CD complexation in the presence of a third component, poloxamer 188.
Collapse
|
23
|
Gaber DA, Alhawas HS, Alfadhel FA, Abdoun SA, Alsubaiyel AM, Alsawi RM. Mini-Tablets versus Nanoparticles for Controlling the Release of Amoxicillin: In vitro/In vivo Study. Drug Des Devel Ther 2020; 14:5405-5418. [PMID: 33324038 PMCID: PMC7732758 DOI: 10.2147/dddt.s285522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/06/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Controlling the drug release from the dosage form at a definite rate is the main challenge for a successful oral controlled-release drug delivery system. In this study, mini-tablets (MTs) and lipid/polymer nanoparticles (LPNs) of lipid polymer and chitosan in different ratios were designed to encapsulate and control the release time of Amoxicillin (AMX). Methods Physical characteristics and in vitro release profiles of both MT and LPN formulations were studied. Antimicrobial activity and oral pharmacokinetics of the optimum MT and LPN formulations in comparison to market tablet were studied in rats. Results All designed formulations of AMX as MTs and LPNs showed accepted characteristics. MT-6 (Compritol/Chitosan 1:1) showed the greatest retardation among all prepared minitablet preparations, releasing about 79.5% of AMX over 8 h. In contrast, LPN-11 (AMX: Cr 1:3/Chitosan 1 mg/mL) had the slowest drug release, revealing the sustained release of 80.9% within 8 h. The MIC of both optimized tablet formula (MT-6) and LPNs formula (LPN-11) was around two-fold lower than the control against H. pylori. The Cmax of MT-6 and LPN11 were non significantly different compared with the marketed AMX product. While the bioavailability experiment proved that the relative bioavailability of the AMX was 1.85 and 1.8 after the oral use of LPN11 and MT-6, respectively, compared to the market tablet. Conclusion The results verified that both controlled-release mini-tablets and lipid/polymer nanoparticles can be used for sustaining the release and hence improve the bioavailability of amoxicillin.
Collapse
Affiliation(s)
- Dalia A Gaber
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah, kingdom of saudi arabia.,Department of Quality Control & Quality Assurance, Holding Company for Biological Products and Vaccines, Cairo, Egypt
| | - Hessah S Alhawas
- College of Pharmacy, Qassim University, Buraidah, kingdom of saudi arabia
| | - Fatimah A Alfadhel
- College of Pharmacy, Qassim University, Buraidah, kingdom of saudi arabia
| | - Siham A Abdoun
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah, kingdom of saudi arabia.,National Medicine Quality Control Laboratory, National Medicine and Poisons Board, Sudan
| | - Amal M Alsubaiyel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah, kingdom of saudi arabia
| | - Rehab M Alsawi
- King Faisal Specialist Hospital and Research Center, Riyadh, kingdom of saudi arabia
| |
Collapse
|
24
|
Alam P, Ezzeldin E, Iqbal M, Mostafa GA, Anwer MK, Alqarni MH, Foudah AI, Shakeel F. Determination of Delafloxacin in Pharmaceutical Formulations Using a Green RP-HPTLC and NP-HPTLC Methods: A Comparative Study. Antibiotics (Basel) 2020; 9:359. [PMID: 32630451 PMCID: PMC7344820 DOI: 10.3390/antibiotics9060359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 11/25/2022] Open
Abstract
In this work; delafloxacin (DLFX) was determined using a validated green RP-HPTLC and NP-HPTLC methods in commercial tablets and in-house developed solid lipid nanoparticles (SLNs). RP-HPTLC determination of DLFX was performed using "RP-18 silica gel 60 F254S HPTLC plates". However; NP-HPTLC estimation of DLFX was performed using "silica gel 60 F254S HPTLC plates". For a green RP-HPTLC method; the ternary combination of ethanol:water:ammonia solution (5:4:2 v/v/v) was used as green mobile phase. However; for NP-HPTLC method; the ternary mixture of ethyl acetate: methanol: ammonia solution (5:4:2 v/v/v) was used as normal mobile phase. The analysis of DLFX was conducted in absorbance/reflectance mode of densitometry at λmax = 295 nm for both methods. RP-HPTLC method was found more accurate, precise, robust and sensitive for the analysis of DLFX compared with the NP-HPTLC method. The % assay of DLFX in commercial tablets and in-house developed SLNs was determined as 98.2 and 101.0%, respectively, using the green RP-HPTLC technique, however; the % assay of DLFX in commercial tablets and in-house developed SLNs was found to be 94.4 and 95.0%, respectively, using the NP-HPTLC method. Overall, the green RP-HPTLC method was found superior over the NP-HPTLC. Therefore, the proposed green RP-HPTLC method can be successfully applied for analysis of DLFX in commercial tablets, SLNs and other formulations containing DLFX.
Collapse
Affiliation(s)
- Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (P.A.); (M.H.A.); (A.I.F.)
| | - Essam Ezzeldin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.E.); (M.I.); (G.A.E.M.)
- Drug Bioavailability Unit, Central Laboratory, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.E.); (M.I.); (G.A.E.M.)
- Drug Bioavailability Unit, Central Laboratory, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Gamal A.E. Mostafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.E.); (M.I.); (G.A.E.M.)
- Micro-Analytical Laboratory, Applied Organic Chemistry Department, National Research Center, Dokki, Cairo 12622, Egypt
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (P.A.); (M.H.A.); (A.I.F.)
| | - Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (P.A.); (M.H.A.); (A.I.F.)
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|