1
|
D’Abbrunzo I, Venier E, Selmin F, Škorić I, Bernardo E, Procida G, Perissutti B. Stability of Ternary Drug-Drug-Drug Coamorphous Systems Obtained Through Mechanochemistry. Pharmaceutics 2025; 17:92. [PMID: 39861740 PMCID: PMC11769221 DOI: 10.3390/pharmaceutics17010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: This study investigates the preparation of coamorphous systems composed entirely of active pharmaceutical ingredients (APIs), namely praziquantel, niclosamide, and mebendazole. The objective was to formulate and characterize binary and ternary coamorphous systems to evaluate their structural, thermal, and stability properties. Methods: Ten different mixtures (binary and ternary) were designed through a mixture design approach and prepared using a sustainable, one-step neat grinding process in a lab-scale vibrational mill. The systems were prepared reproducibly within 4 h across the entire experimental domain. Structural characterization was performed using PXRD and FTIR to confirm the absence of crystalline domains and the presence of molecular interactions. The glass transition temperature (Tg) was theoretically calculated using the Gordon-Taylor equation for three-component systems and determined experimentally via DSC. Stability studies were conducted on seven systems under different storage conditions (-30 °C, 5 °C, 25 °C, and 40 °C) for six months. Results: PXRD analysis confirmed the formation of coamorphous systems with no crystalline phases. DSC revealed a single Tg for most systems, indicating homogeneity. Stability studies demonstrated that five out of seven systems adhered to the "Tg-50 °C" stability rule, remaining physically stable over six months. Recrystallization studies indicated diverse pathways: some systems reverted to their original crystalline phases, while others formed new entities such as cocrystals. Conclusions: This study highlights the feasibility of coamorphous systems composed of multiple APIs using a simple, solvent-free grinding approach. The findings underscore the importance of molecular interactions in determining stability and recrystallization behavior, offering insights for designing robust coamorphous formulations.
Collapse
Affiliation(s)
- Ilenia D’Abbrunzo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy (E.V.); (G.P.)
| | - Elisabetta Venier
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy (E.V.); (G.P.)
| | - Francesca Selmin
- Department of Pharmaceutical Sciences, University of Milan, Via G. Colombo, 71, 20133 Milan, Italy;
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia;
| | - Enrico Bernardo
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 9, 35131 Padova, Italy;
| | - Giuseppe Procida
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy (E.V.); (G.P.)
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy (E.V.); (G.P.)
| |
Collapse
|
2
|
Polyzois H, Nguyen HT, Roberto de Alvarenga Junior B, Taylor LS. Amorphous Solid Dispersion Formation for Enhanced Release Performance of Racemic and Enantiopure Praziquantel. Mol Pharm 2024; 21:5285-5296. [PMID: 39292641 PMCID: PMC11462518 DOI: 10.1021/acs.molpharmaceut.4c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024]
Abstract
Praziquantel (PZQ) is the treatment of choice for schistosomiasis, which affects more than 250 million people globally. Commercial tablets contain the crystalline racemic compound (RS-PZQ) which limits drug dissolution and oral bioavailability and can lead to unwanted side effects and poor patient compliance due to the presence of the S-enantiomer. While many approaches have been explored for improving PZQ's dissolution and oral bioavailability, studies focusing on investigating its release from amorphous solid dispersions (ASDs) have been limited. In this work, nucleation induction time experiments were performed to identify suitable polymers for preparing ASDs using RS-PZQ and R-PZQ, the therapeutically active enantiomer. Cellulose-based polymers, hydroxypropyl methylcellulose acetate succinate (HPMCAS, MF grade) and hydroxypropyl methylcellulose (HPMC, E5 LV grade), were the best crystallization inhibitors for RS-PZQ in aqueous media and were selected for ASD preparation using solvent evaporation (SE) and hot-melt extrusion (HME). ASDs prepared experimentally were subjected to X-ray powder diffraction to verify their amorphous nature and a selected number of ASDs were monitored and found to remain physically stable following several months of storage under accelerated-stability testing conditions. SE HPMCAS-MF ASDs of RS-PZQ and R-PZQ showed faster release than HPMC E5 LV ASDs and maintained good performance with an increase in drug loading (DL). HME ASDs of RS-PZQ formulated using HPMCAS-MF exhibited slightly enhanced release compared to that of SE ASDs. SE HPMCAS-MF ASDs showed a maximum release increase of the order of 6 times compared to generic and branded (Biltricide) PZQ tablets. More importantly, SE R-PZQ ASDs with HPMCAS-MF released the drug as effectively as RS-PZQ or better, depending on the DL used. These findings have significant implications for the development of commercial PZQ formulations comprised solely of the R-enantiomer, which can result in mitigation of the biopharmaceutical and compliance issues associated with current commercial tablets.
Collapse
Affiliation(s)
- Hector Polyzois
- Department of Industrial and Molecular
Pharmaceutics, College of Pharmacy, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Hanh Thuy Nguyen
- Department of Industrial and Molecular
Pharmaceutics, College of Pharmacy, Purdue
University, West Lafayette, Indiana 47907, United States
| | | | - Lynne S. Taylor
- Department of Industrial and Molecular
Pharmaceutics, College of Pharmacy, Purdue
University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Mureşan-Pop M, Simon S, Bodoki E, Simon V, Turza A, Todea M, Vulpoi A, Magyari K, Iacob BC, Bărăian AI, Gołdyn M, Gomes CSB, Susana M, Duarte MT, André V. Mechanochemical Synthesis of New Praziquantel Cocrystals: Solid-State Characterization and Solubility. CRYSTAL GROWTH & DESIGN 2024; 24:4668-4681. [PMID: 38855579 PMCID: PMC11157481 DOI: 10.1021/acs.cgd.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024]
Abstract
New cocrystals of praziquantel with suberic, 3-hydroxybenzoic, benzene-1,2,4,5-tetracarboxylic, trimesic, and 5-hydroxyisophthalic acids were obtained through ball milling experiments. The optimal conditions for the milling process were chosen by changing the solvent volume and the mechanical action time. Supramolecular interactions in the new cocrystals are detailed based on single-crystal X-ray diffraction analysis, confirming the expected formation of hydrogen bonds between the praziquantel carbonyl group and the carboxyl (or hydroxyl) moieties of the coformers. Different structural characterization techniques were performed for all samples, but the praziquantel:suberic acid cocrystal includes a wider range of investigations such as thermal analysis, infrared and X-ray photoelectron spectroscopies, and SEM microscopy. The stability for up to five months was established by keeping it under extreme conditions of temperature and humidity. Solubility studies were carried out for all the new forms disclosed herein and compared with the promising cocrystals previously reported with salicylic, 4-aminosalicylic, vanillic, and oxalic acids. HPLC analyses revealed a higher solubility for most of the new cocrystal forms, as compared to pure praziquantel.
Collapse
Affiliation(s)
- Marieta Mureşan-Pop
- Nanostructured
Materials and Bio-Nano Interfaces Department, Interdisciplinary Research
Institute on Bio-Nano-Sciences, Babes-Bolyai
University, 42, Treboniu
Laurian, Cluj-Napoca 400271, Romania
- INSPIRE
Research Platform, Babes-Bolyai University, 11, Arany Janos, Cluj-Napoca 400028, Romania
| | - Simion Simon
- Nanostructured
Materials and Bio-Nano Interfaces Department, Interdisciplinary Research
Institute on Bio-Nano-Sciences, Babes-Bolyai
University, 42, Treboniu
Laurian, Cluj-Napoca 400271, Romania
- INSPIRE
Research Platform, Babes-Bolyai University, 11, Arany Janos, Cluj-Napoca 400028, Romania
| | - Ede Bodoki
- Analytical
Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4, Louis Pasteur, Cluj-Napoca 400349, Romania
| | - Viorica Simon
- Nanostructured
Materials and Bio-Nano Interfaces Department, Interdisciplinary Research
Institute on Bio-Nano-Sciences, Babes-Bolyai
University, 42, Treboniu
Laurian, Cluj-Napoca 400271, Romania
| | - Alexandru Turza
- Mass
Spectrometry, Chromatography and Applied Physics Department, National Institute for Research and Development of
Isotopic and Molecular Technologies, Cluj-Napoca 400293, Romania
| | - Milica Todea
- Nanostructured
Materials and Bio-Nano Interfaces Department, Interdisciplinary Research
Institute on Bio-Nano-Sciences, Babes-Bolyai
University, 42, Treboniu
Laurian, Cluj-Napoca 400271, Romania
- INSPIRE
Research Platform, Babes-Bolyai University, 11, Arany Janos, Cluj-Napoca 400028, Romania
- Molecular
Sciences Department, Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 4, Louis Pasteur, Cluj-Napoca 400349, Romania
| | - Adriana Vulpoi
- Nanostructured
Materials and Bio-Nano Interfaces Department, Interdisciplinary Research
Institute on Bio-Nano-Sciences, Babes-Bolyai
University, 42, Treboniu
Laurian, Cluj-Napoca 400271, Romania
- INSPIRE
Research Platform, Babes-Bolyai University, 11, Arany Janos, Cluj-Napoca 400028, Romania
| | - Klara Magyari
- Nanostructured
Materials and Bio-Nano Interfaces Department, Interdisciplinary Research
Institute on Bio-Nano-Sciences, Babes-Bolyai
University, 42, Treboniu
Laurian, Cluj-Napoca 400271, Romania
| | - Bogdan C. Iacob
- Analytical
Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4, Louis Pasteur, Cluj-Napoca 400349, Romania
| | - Alexandra Iulia Bărăian
- Analytical
Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4, Louis Pasteur, Cluj-Napoca 400349, Romania
| | - Mateusz Gołdyn
- Faculty of
Chemistry, Adam Mickiewicz University in
Poznań, Uniwersytetu
Poznańskiego 8, Poznań 61-614, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University in Poznań, Uniwersytetu Poznańskiego 10, Poznań 61-614, Poland
| | - Clara S. B. Gomes
- LAQV-REQUIMTE,
Department of Chemistry, NOVA School of Science and Technology (NOVA
FCT), NOVA University of Lisbon, Caparica 2829-516, Portugal
| | - Margarida Susana
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - M. Teresa Duarte
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Vânia André
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
- Associação
do Instituto Superior Técnico para a Investigação
e Desenvolvimento (IST-ID), Avenida António José de Almeida, 12, Lisboa 1000-043, Portugal
| |
Collapse
|
4
|
Jablan J, Marguí E, Posavec L, Klarić D, Cinčić D, Galić N, Jug M. Product contamination during mechanochemical synthesis of praziquantel co-crystal, polymeric dispersion and cyclodextrin complex. J Pharm Biomed Anal 2024; 238:115855. [PMID: 37948780 DOI: 10.1016/j.jpba.2023.115855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
This paper aims to evaluate the product contamination by elemental impurities during the mechanochemical synthesis of praziquantel (PZQ) co-crystal, polymeric dispersion and cyclodextrin complex by grinding. To assess that, PZQ was co-ground with malic acid (MA), Poloxamer F-127 (F-127) and hydroxypropyl-β-cyclodextrin (HPβCD) in high-energy vibrational mills using stainless steel and agate grinding tools, applying different processing time (30 and 90 min). Differential scanning calorimetry and X-ray powder diffraction confirmed the formation of the targeted products, regardless of applied processing time and grinding tool type. After digestion of the solid powder products, the levels of selected elemental impurities were analysed by inductively coupled plasma mass spectrometry (ICP-MS). The analysis revealed that the content of Mg, Ca, and V are below the limit of quantification in all samples analysed. The contents of P and Na are not related to the type of ball mill and reaction time, but to the starting materials themselves, considering that Na is found in HPβCD and MA, while P was found in F-127. The detected Si impurities in the co-ground products can be related to the use of the agate balls and jars, while the presence of Cr and Fe can be related to the use of the stainless steel grinding tools. The risk assessment showed that the oral administration of the prepared co-ground products in quantities corresponding to regular PZQ oral doses resulted in only insignificant exposure to Cr. Finally, the use of agate grinding tools should be preferred, as administration of such products results in lower Cr exposure. The presented elemental impurities did not lead to any significant drug degradation as PZQ content at the end of the six-month testing period was still in the range of 95-105 % of the initial content. Regardless, ICP-MS analysis of the elemental impurities should be considered in regular quality control procedures in the development and production of novel pharmaceutical products prepared by grinding.
Collapse
Affiliation(s)
- Jasna Jablan
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Analytical Chemistry, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Eva Marguí
- University of Girona, Department of Chemistry, C/M.Aurèlia Capmany 69, 17003 Girona, Spain
| | - Lidija Posavec
- University of Zagreb Faculty of Science, Department of Chemistry, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - David Klarić
- University of Zagreb Faculty of Science, Department of Chemistry, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Dominik Cinčić
- University of Zagreb Faculty of Science, Department of Chemistry, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Nives Galić
- University of Zagreb Faculty of Science, Department of Chemistry, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Mario Jug
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology, A. Kovačića 1, 10 000 Zagreb, Croatia.
| |
Collapse
|
5
|
D’Abbrunzo I, Procida G, Perissutti B. Praziquantel Fifty Years on: A Comprehensive Overview of Its Solid State. Pharmaceutics 2023; 16:27. [PMID: 38258039 PMCID: PMC10821272 DOI: 10.3390/pharmaceutics16010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
This review discusses the entire progress made on the anthelmintic drug praziquantel, focusing on the solid state and, therefore, on anhydrous crystalline polymorphs, amorphous forms, and multicomponent systems (i.e., hydrates, solvates, and cocrystals). Despite having been extensively studied over the last 50 years, new polymorphs and the greater part of their cocrystals have only been identified in the past decade. Progress in crystal engineering science (e.g., the use of mechanochemistry as a solid form screening tool and more strategic structure-based methods), along with the development of analytical techniques, including Synchrotron X-ray analyses, spectroscopy, and microscopy, have furthered the identification of unknown crystal structures of the drug. Also, computational modeling has significantly contributed to the prediction and design of new cocrystals by considering structural conformations and interactions energy. Whilst the insights on praziquantel polymorphs discussed in the present review will give a significant contribution to controlling their formation during manufacturing and drug formulation, the detailed multicomponent forms will help in designing and implementing future praziquantel-based functional materials. The latter will hopefully overcome praziquantel's numerous drawbacks and exploit its potential in the field of neglected tropical diseases.
Collapse
Affiliation(s)
| | | | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy (G.P.)
| |
Collapse
|
6
|
Cappuccino C, Spoletti E, Renni F, Muntoni E, Keiser J, Voinovich D, Perissutti B, Lusi M. Co-Crystalline Solid Solution Affords a High-Soluble and Fast-Absorbing Form of Praziquantel. Mol Pharm 2023; 20:2009-2016. [PMID: 36884008 PMCID: PMC10074383 DOI: 10.1021/acs.molpharmaceut.2c00984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Praziquantel (PZQ) is a chiral class-II drug, and it is used as a racemate for the treatment of schistosomiasis. The knowledge of several cocrystals with dicarboxylic acids has prompted the realization of solid solutions of PZQ with both enantiomers of malic acid and tartaric acid. Here, the solid form landscape of such a six-component system has been investigated. In the process, two new cocrystals were structural-characterized and three non-stoichiometric, mixed crystal forms identified and isolated. Thermal and solubility analysis indicates a fourfold solubility advantage for the newly prepared solid solutions over the pure drug. In addition, a pharmacokinetic study was conducted in rats, which involved innovative mini-capsules for the oral administration of the solid samples. The available data indicate that the faster dissolution rate of the solid solutions translates in faster absorption of the drug and helps maintain a constant steady-state concentration.
Collapse
Affiliation(s)
- Chiara Cappuccino
- Department of Chemical Science and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Enrico Spoletti
- Department of Chemical Science and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Fiammetta Renni
- Department of Chemical Science and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.,Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Elisabetta Muntoni
- Department of Drug Science and Technology, University of Turin, 10129 Turin, Italy
| | - Jennifer Keiser
- Department of Medical Parasitology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland.,University of Basel, Basel 4003 Switzerland
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Matteo Lusi
- Department of Chemical Science and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
7
|
Kinetics of Drug Release from Clay Using Enhanced Sampling Methods. Pharmaceutics 2022; 14:pharmaceutics14122586. [PMID: 36559081 PMCID: PMC9781022 DOI: 10.3390/pharmaceutics14122586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
A key step in the development of a new drug, is the design of drug-excipient complexes that lead to optimal drug release kinetics. Computational chemistry and specifically enhanced sampling molecular dynamics methods can play a key role in this context, by minimizing the need for expensive experiments, and reducing cost and time. Here we show that recent advances in enhanced sampling methodologies can be brought to fruition in this area. We demonstrate the potential of these methodologies by simulating the drug release kinetics of the complex praziquantel-montmorillonite in water. Praziquantel finds promising applications in the treatment of schistosomiasis, but its biopharmaceutical profile needs to be improved, and a cheap material such as the montmorillonite clay would be a very convenient excipient. We simulate the drug release both from surface and interlayer space, and find that the diffusion of the praziquantel inside the interlayer space is the process that limits the rate of drug release.
Collapse
|
8
|
Salazar-Rojas D, Kaufman TS, Maggio RM. A study of the heat-mediated phase transformations of praziquantel hydrates. Evaluation of their impact on the dissolution rate. Heliyon 2022; 8:e11317. [DOI: 10.1016/j.heliyon.2022.e11317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
|
9
|
Adekiya TA, Kumar P, Kondiah PPD, Ubanako P, Choonara YE. In Vivo Evaluation of Praziquantel-Loaded Solid Lipid Nanoparticles against S. mansoni Infection in Preclinical Murine Models. Int J Mol Sci 2022; 23:ijms23169485. [PMID: 36012770 PMCID: PMC9408860 DOI: 10.3390/ijms23169485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to develop and assess the long-term stability of drug-loaded solid lipid nanoparticles (SLNs). The SLNs were designed to extend the release profile, overcome the problems of bioavailability and solubility, investigate toxicity, and improve the antischistosomal efficacy of praziquantel. The aim was pursued using solvent injection co-homogenization techniques to fabricate SLNs in which Compritol ATO 888 and lecithin were used as lipids, and Pluronic F127 (PF127) was used as a stabilizer. The long-term stability effect of the PF127 as a stabilizer on the SLNs was evaluated. Dynamic light scattering (DLS) was used to determine the particle size, stability, and polydispersity. The morphology of the SLNs was examined through the use of transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The chemical properties, as well as the mechanical, thermal, and crystal behaviours of SLNs were evaluated using FTIR, ElastoSens Bio2, XRPD, DSC, and TGA, respectively. SLNs with PF127 depicted an encapsulation efficiency of 71.63% and a drug loading capacity of 11.46%. The in vitro drug release study for SLNs with PF127 showed a cumulative release of 48.08% for the PZQ within 24 h, with a similar release profile for SLNs' suspension after 120 days. DLS, ELS, and optical characterization and stability profiling data indicate that the addition of PF127 as the surfactants provided long-term stability for SLNs. In vitro cell viability and in vivo toxicity evaluation signify the safety of SLNs stabilized with PF127. In conclusion, the parasitological data showed that in S. mansoni-infected mice, a single (250 mg/kg) oral dosage of CLPF-SLNs greatly improved PZQ antischistosomal efficacy both two and four weeks post-infection. Thus, the fabricated CLPF-SLNs demonstrated significant efficiency inthe delivery of PZQ, and hence are a promising therapeutic strategy against schistosomiasis.
Collapse
|
10
|
MacEachern L, Kermanshahi-Pour A, Mirmehrabi M. Transformation under pressure: Discovery of a novel crystalline form of anthelmintic drug Praziquantel using high-pressure supercritical carbon dioxide. Int J Pharm 2022; 619:121723. [PMID: 35395364 DOI: 10.1016/j.ijpharm.2022.121723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
Supercritical carbon dioxide (CO2) has been used as a processing technique to control polymorphism of pharmaceuticals. However, there are fewer reports of novel polymorphs being discovered by supercritical CO2 processing. As supercritical crystallization methods gain attention for potential in pharmaceutical processing, they may become a critical screening tool for discovery of new polymorphs. In this work, a case study is presented for a novel crystalline form of the anthelmintic drug, Praziquantel, found through supercritical CO2 processing. The novel form of Praziquantel was characterized by chromatography, nuclear magnetic resonance and infrared spectroscopy, X-ray powder diffraction, thermal analysis, and scanning electron microscopy. Furthermore, the novel form exhibited 13-20% improved solubility compared to commercial Form A between pH 1.6 and 7.5 and was physically stable under stressed conditions (40 °C and 75% relative humidity) for 7.5 weeks. Overall, this work showed that supercritical CO2 processing is a valuable tool to screen for novel, and possibly viable polymorphs of pharmaceutical compounds with improved properties.
Collapse
Affiliation(s)
- Lauren MacEachern
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3J 1Z1, Canada; Solid State Pharma Inc., 1489 Hollis Street, Suite 300, Halifax, Nova Scotia B3J 3M5, Canada
| | - Azadeh Kermanshahi-Pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3J 1Z1, Canada.
| | - Mahmoud Mirmehrabi
- Solid State Pharma Inc., 1489 Hollis Street, Suite 300, Halifax, Nova Scotia B3J 3M5, Canada.
| |
Collapse
|
11
|
Bertoni S, Hasa D, Albertini B, Perissutti B, Grassi M, Voinovich D, Passerini N. Better and greener: sustainable pharmaceutical manufacturing technologies for highly bioavailable solid dosage forms. Drug Deliv Transl Res 2022; 12:1843-1858. [PMID: 34988827 DOI: 10.1007/s13346-021-01101-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 11/03/2022]
Abstract
In the last decades, Green Chemistry has been gaining widespread attention within the pharmaceutical field. It is thus very important to bring more sustainable approaches into the design and manufacture of effective oral drug delivery systems. This review focuses on spray congealing and mechanochemical activation, two technologies endorsing different principles of green chemistry, and at the same time, addressing some of the challenges related to the transformation of poorly water-soluble drugs in highly bioavailable solid dosage forms. We therefore present an overview of the basic principles, equipment, and application of these particle-engineering technologies, with specific attention to case studies carried out by the groups working in Italian Universities.
Collapse
Affiliation(s)
- Serena Bertoni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127, Bologna, Italy
| | - Dritan Hasa
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Beatrice Albertini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127, Bologna, Italy
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/1, 34127, Trieste, Italy
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Nadia Passerini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127, Bologna, Italy.
| |
Collapse
|
12
|
Salas-Zúñiga R, Mondragón-Vásquez K, Alcalá-Alcalá S, Lima E, Höpfl H, Herrera-Ruiz D, Morales-Rojas H. Nanoconfinement of a Pharmaceutical Cocrystal with Praziquantel in Mesoporous Silica: The Influence of the Solid Form on Dissolution Enhancement. Mol Pharm 2021; 19:414-431. [PMID: 34967632 DOI: 10.1021/acs.molpharmaceut.1c00606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanoconfinement is a recent strategy to enhance solubility and dissolution of active pharmaceutical ingredients (APIs) with poor biopharmaceutical properties. In this work, we combine the advantage of cocrystals of racemic praziquantel (PZQ) containing a water-soluble coformer (i.e., increased solubility and supersaturation) and its confinement in a mesoporous silica material (i.e., increased dissolution rate). Among various potential cocrystalline phases of PZQ with dicarboxylic acid coformers, the cocrystal with glutaric acid (PZQ-GLU) was selected and successfully loaded by the melting method into nanopores of SBA-15 (experimental pore size of 5.6 nm) as suggested by physical and spectroscopic characterization using various complementary techniques like N2 adsorption, powder X-ray diffraction (PXRD), infrared spectroscopy (IR), solid-state NMR (ss-NMR), differential scanning calorimetry (DSC), and field emission-scanning electron microscopy (FE-SEM) analysis. The PZQ-GLU phase confined in SBA-15 presents more mobility according to ss-NMR studies but still retains its cocrystal-like features in the IR spectra, and it also shows depression of the melting transition temperature in DSC. On the contrary, pristine PZQ loaded into SBA-15 was found only in the amorphous state, according to the aforementioned studies. This dissimilar behavior of the composites was attributed to the larger crystal lattice of PZQ over the PZQ-GLU cocrystal (3320.1 vs 1167.9 Å3) and to stronger intermolecular interactions between PZQ and GLU, facilitating the confinement of a more mobile solid-like phase in the constrained channels. Powder dissolution studies under extremely nonsink conditions (SI = 0.014) of the confined PZQ-GLU and amorphous PZQ phases embedded in mesoporous silica showed transient supersaturation behavior when dissolving in simulated gastric fluid (HCl pH 1.2 at 37 ± 0.5 °C) in a similar fashion to the bare cocrystal PZQ-GLU. A comparison of the area under the curve (AUC0-90 min) of the dissolution profiles afforded a dissolution advantage of 2-fold (p < 0.05) of the new solid phases over pristine racemic PZQ after 90 min; under these conditions, the solubilized API reprecipitated as the recently discovered PZQ hemihydrate (PZQ-HH). In the presence of a cellulosic polymer, sustained solubilization of PZQ from composites SBA-15/PZQ or SBA-15/PZQ-GLU was observed, increasing AUC0-90 min up to 5.1-fold in comparison to pristine PZQ. The combination of a confined solid phase in mesoporous silica and a methylcellulose polymer in the dissolution medium effectively maintained the drug solubilized during times significant to promote absorption. Finally, powder dissolution studies under intermediate nonsink conditions (SI = 1.99) showed a fast release profile from the nanoconfined PZQ-GLU phase in SBA-15, which reached rapid saturation (95% drug dissolved at 30 min); the amorphous PZQ composite and bare PZQ-GLU also displayed an immediate release of the API but at a lower rate (69% drug dissolved at 30 min). In all of these cases, a large dissolution advantage was observed from any of the novel solid phases over PZQ.
Collapse
Affiliation(s)
- Reynaldo Salas-Zúñiga
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México.,Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México
| | | | - Sergio Alcalá-Alcalá
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Coyoacán, Ciudad de México 04510, México
| | - Herbert Höpfl
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México
| | - Dea Herrera-Ruiz
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México
| | - Hugo Morales-Rojas
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México
| |
Collapse
|
13
|
Mechanochemical Synthesis and Physicochemical Characterization of Previously Unreported Praziquantel Solvates with 2-Pyrrolidone and Acetic Acid. Pharmaceutics 2021; 13:pharmaceutics13101606. [PMID: 34683899 PMCID: PMC8540171 DOI: 10.3390/pharmaceutics13101606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
Two new solvates of the widely used anthelminthic Praziquantel (PZQ) were obtained through mechanochemical screening with different liquid additives. Specifically, 2-pyrrolidone and acetic acid gave solvates with 1:1 stoichiometry (PZQ-AA and PZQ-2P, respectively). A wide-ranging characterization of the new solid forms was carried out by means of powder X-ray diffraction, differential scanning calorimetry, FT-IR, solid-state NMR and biopharmaceutical analyses (solubility and intrinsic dissolution studies). Besides, the crystal structures of the two new solvates were solved from their Synchrotron-PXRD pattern: the solvates are isostructural, with equivalent triclinic packing. In both structures acetic acid and 2-pyrrolidone showed a strong interaction with the PZQ molecule via hydrogen bond. Even though previous studies have shown that PZQ is conformationally flexible, the same syn conformation as the PZQ Form A of the C=O groups of the piperazinone-cyclohexylcarbonyl segment is involved in these two new solid forms. In terms of biopharmaceutical properties, PZQ-AA and PZQ-2P exhibited water solubility and intrinsic dissolution rate much greater than those of anhydrous Form A.
Collapse
|
14
|
Direct Powder Extrusion 3D Printing of Praziquantel to Overcome Neglected Disease Formulation Challenges in Paediatric Populations. Pharmaceutics 2021; 13:pharmaceutics13081114. [PMID: 34452075 PMCID: PMC8398999 DOI: 10.3390/pharmaceutics13081114] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/30/2022] Open
Abstract
For the last 40 years, praziquantel has been the standard treatment for schistosomiasis, a neglected parasitic disease affecting more than 250 million people worldwide. However, there is no suitable paediatric formulation on the market, leading to off-label use and the splitting of commercial tablets for adults. In this study, we use a recently available technology, direct powder extrusion (DPE) three-dimensional printing (3DP), to prepare paediatric Printlets™ (3D printed tablets) of amorphous solid dispersions of praziquantel with Kollidon® VA 64 and surfactants (Span™ 20 or Kolliphor® SLS). Printlets were successfully printed from both pellets and powders obtained from extrudates by hot melt extrusion (HME). In vitro dissolution studies showed a greater than four-fold increase in praziquantel release, due to the formation of amorphous solid dispersions. In vitro palatability data indicated that the printlets were in the range of praziquantel tolerability, highlighting the taste masking capabilities of this technology without the need for additional taste masking excipients. This work has demonstrated the possibility of 3D printing tablets using pellets or powder forms obtained by HME, avoiding the use of filaments in fused deposition modelling 3DP. Moreover, the main formulation hurdles of praziquantel, such as low drug solubility, inadequate taste, and high and variable dose requirements, can be overcome using this technology.
Collapse
|